Advertisement

Modelling Financial Time Series

  • P. Manimaran
  • J. C. Parikh
  • P. K. Panigrahi
  • S. Basu
  • C. M. Kishtawal
  • M. B. Porecha
Part of the New Economic Windows book series (NEW)

Summary

Financial time series, in general, exhibit average behaviour at “long” time scales and stochastic behaviour at ‘short” time scales. As in statistical physics, the two have to be modelled using different approaches — deterministic for trends and probabilistic for fluctuations about the trend. In this talk, we will describe a new wavelet based approach to separate the trend from the fluctuations in a time series. A deterministic (non-linear regression) model is then constructed for the trend using genetic algorithm. We thereby obtain an explicit analytic model to describe dynamics of the trend. Further the model is used to make predictions of the trend. We also study statistical and scaling properties of the fluctuations. The fluctuations have non-Gaussian probability distribution function and show multi-scaling behaviour. Thus, our work results in a comprehensive model of trends and fluctuations of a financial time series.

Keywords

Discrete Wavelet Transform Probability Distribution Function Financial Time Series Smooth Trend Trend Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelboot BB (1997) Fractals and Scaling in Finance, Springer-Verlag, New York; Bouchaud JP, Potters M (2000) Theory of Financial Risk, Cambridge University Press, Cambridge; Mantegna RN, Stanley HE (2000) An Introduction to Econophysics, Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Parikh JC (2003) Stochastic Processes and Financial Markets, Narosa, New DelhiGoogle Scholar
  3. 3.
    Manimaran P, Panigrahi PK, Parikh JC (2005) Phys. Rev. E72: 046120-Google Scholar
  4. 4.
    Daubechies I (1992) Ten Lectures on Wavelets, SIAM, PhiladelphiaMATHGoogle Scholar
  5. 5.
    Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Physica A 316:87MATHCrossRefADSGoogle Scholar
  6. 6.
    Szpiro GG (1997) Phys. Rev. E 55:2557CrossRefADSGoogle Scholar
  7. 7.
    Feder J (1998) Fractals, Plenum Press, New YorkGoogle Scholar
  8. 8.
    Abarbanel H, Brown R, Sidorovich J, Tsimring L (1993) Rev. Mod. Phys. 65:1331.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • P. Manimaran
    • 1
  • J. C. Parikh
    • 1
  • P. K. Panigrahi
    • 1
  • S. Basu
    • 2
  • C. M. Kishtawal
    • 2
  • M. B. Porecha
    • 1
  1. 1.Physical Research LaboratoryAhmedabadIndia
  2. 2.Space Applications CentreAhmedabadIndia

Personalised recommendations