Perfusion MR I

  • Y. Ge
  • M. Law
  • M. Inglese
  • R.I. Grossman
Part of the Topics in Neuroscience book series (TOPNEURO)


There has been an increasing interest in studying microvascular and brain perfusion abnormalities in multiple sclerosis (MS) due to the accumulating evidence regarding the primary vascular pathogenesis in MS [1, 2, 3, 4]. Early microscopic investigations demonstrated perivascular inflammatory infiltrates, including macrophages, often found in close contact with the disintegrating myelin sheath [5], which were later described as a T-cell-mediated immune reaction causing the activation of macrophages that contained intracytoplasmic, myelin-reactive degradation products [6]. The intravascular fibrin deposition [7, 8] and venous occlusive changes with hemodynamic impairment have also been demonstrated in active MS lesions [9]. Therefore, not surprisingly, these essential vascular pathologies have effects on the cerebral blood perfusion, which may cause mitochondrial dysfunction and axonal degeneration. However, only recently, due to the major achievements of in vivo perfusion imaging, have we started to understand the mechanisms of hemodynamic changes and neurodegeneration occurring in MS. This chapter focuses on some of the recent developments in the field of vascular pathology and on some ongoing research using perfusion MRI, particularly dynamic susceptibility contrast-enhanced MRI (DSC-MRI), to investigate vascular neuropathology in MS.


Multiple Sclerosis Cerebral Blood Volume Arterial Spin Label Mean Transit Time Multiple Sclerosis Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Putnam TJ (1933) The pathogenesis of multiple sclerosis: a possible vascular factor. N Engl J Med 209:786–790CrossRefGoogle Scholar
  2. 2.
    Adams CW, Abdulla YH, Torres EM, Poston RN (1987) Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol 13:141–152PubMedGoogle Scholar
  3. 3.
    Wakefield AJ, More LJ, Difford J, McLaughlin JE (1994) Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol 47:129–133PubMedCrossRefGoogle Scholar
  4. 4.
    Lassmann H (2003) Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci 206:187–191PubMedCrossRefGoogle Scholar
  5. 5.
    Charcot J-M (1877) Lectures on the diseases of the nervous system. New Sydenham Society, LondonGoogle Scholar
  6. 6.
    Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219:308–310PubMedCrossRefGoogle Scholar
  7. 7.
    Putnam TJ (1937) Lesions of ‘encephalomyelitis’ and multiple sclerosis: venous thrombosis as the primary alteration. JAMA 108:1477–1480Google Scholar
  8. 8.
    Adams CW, High OB (1982) Embolism and multiple sclerosis. Lancet 1:621PubMedCrossRefGoogle Scholar
  9. 9.
    Graham EM, Stanford MR, Sanders MD, Kasp E, Dumonde DC (1989) A point prevalence study of 150 patients with idiopathic retinal vasculitis. 1. Diagnostic value of ophthalmological features. Br J Ophthalmol 73:714–721PubMedCrossRefGoogle Scholar
  10. 10.
    Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308PubMedCrossRefGoogle Scholar
  11. 11.
    Lucchinetti C, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedCrossRefGoogle Scholar
  12. 12.
    Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121PubMedCrossRefGoogle Scholar
  13. 13.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468PubMedCrossRefGoogle Scholar
  14. 14.
    Fog T (1964) On the vessel-plaque relationships in the brain in multiple sclerosis. Acta Neurol Scand 40(Suppl10):9–15CrossRefGoogle Scholar
  15. 15.
    Tan IL, van Schijndel RA, Pouwels PJ et al (2000) MR venography of multiple sclerosis. Am J Neuroradiol 21:1039–1042PubMedGoogle Scholar
  16. 16.
    Libby P, Ordovas JM, Auger KR et al (1986) Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124:179–185PubMedGoogle Scholar
  17. 17.
    Putnam TJ (1935) Evidences of vascular occlusion in multiple sclerosis and encephalomyelitis. Arch Neurol Neuropsychol 32:1298–1321Google Scholar
  18. 18.
    Adams CW (1988) Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiat 51:260–265PubMedGoogle Scholar
  19. 19.
    Wang X, Barone FC, Aiyar NV, Feuerstein GZ (1997) Interleukin-1 receptor and receptor antagonist gene expression after focal stroke in rats. Stroke 28:155–161; comment 161-162PubMedGoogle Scholar
  20. 20.
    del Zoppo GJ, Becker KJ, Hallenbeck JM (2001) Inflammation after stroke: is it harmful? Arch Neurol 58:669–672PubMedCrossRefGoogle Scholar
  21. 21.
    Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834PubMedCrossRefGoogle Scholar
  22. 22.
    Andeweg J (1996) The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology 38:621–628PubMedCrossRefGoogle Scholar
  23. 23.
    Aboul-Enein F, Lassmann H (2005) Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol (Berl) 109:49–55CrossRefGoogle Scholar
  24. 24.
    Lu F, Selak M, O’Connor J et al (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103PubMedCrossRefGoogle Scholar
  25. 25.
    Aboul-Enein F, Weiser P, Hoftberger R et al (2006) Transient axonal injury in the absence of demyelination: a correlate of clinical disease in acute experimental autoimmune encephalomyelitis. Acta Neuropathol (Berl) 111:539–547CrossRefGoogle Scholar
  26. 26.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson G, Wetzel SG, Cha S et al (2004) Measuring blood volume and vascular transfer constant from dynamic, T**2-weighted contrast-enhanced MRI. Magn Reson Med 51:961–968PubMedCrossRefGoogle Scholar
  28. 28.
    Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227:593–600PubMedCrossRefGoogle Scholar
  29. 29.
    Haselhorst R, Kappos L, Bilecen D et al (2000) Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: application of an extended blood-brain barrier leakage correction. J Magn Reson Imaging 11:495–505PubMedCrossRefGoogle Scholar
  30. 30.
    Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. Am J Neuroradiol 26:1539–1547PubMedGoogle Scholar
  31. 31.
    Wuerfel J, Bellmann-Strobl J, Brunecker P et al (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127:111–119PubMedCrossRefGoogle Scholar
  32. 32.
    Law M, Saindane AM, Ge Y et al (2004) Microvascular abnormality in relapsingremitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231:645–652PubMedCrossRefGoogle Scholar
  33. 33.
    Adhya S, Johnson G, Herbert J et al (2006) Pattern of hemodynamic impairment in multiple sclerosis: Dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage 33:1029–1035PubMedCrossRefGoogle Scholar
  34. 34.
    Karonen JO, Vanninen RL, Liu Y et al (1999) Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth. Stroke 30:1583–1590PubMedGoogle Scholar
  35. 35.
    Hatazawa J, Shimosegawa E, Toyoshima H et al (1999) Cerebral blood volume in acute brain infarction: A combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke 30:800–806PubMedGoogle Scholar
  36. 36.
    Grandin CB, Duprez TP, Smith AM et al (2002) Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology 223:361–370PubMedCrossRefGoogle Scholar
  37. 37.
    Rashid W, Parkes LM, Ingle GT et al (2004) Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiatry 75:1288–1293PubMedCrossRefGoogle Scholar
  38. 38.
    Sims DE (1991) Recent advances in pericyte biology: implications for health and disease. Can J Cardiol 7:431–443PubMedGoogle Scholar
  39. 39.
    Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 358:1669–1677PubMedCrossRefGoogle Scholar
  40. 40.
    Broom KA, Anthony DC, Blamire AM et al (2005) MRI reveals that early changes in cerebral blood volume precede blood-brain barrier breakdown and overt pathology in MS-like lesions in rat brain. J Cereb Blood Flow Metab 25:204–216PubMedCrossRefGoogle Scholar
  41. 41.
    Ge Y, Law M, Johnson G et al (2004) Basal ganglia neurodegeneration in multiple sclerosis measured by dynamic susceptibility contrast MRI. Proc Intl Soc Mag Reson Med, Kyoto, JapanGoogle Scholar
  42. 42.
    Lycke J, Wikkelso C, Bergh AC et al (1993) Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethylpropyleneamine oxime. Eur Neurol 33:163–167PubMedGoogle Scholar
  43. 43.
    Ge Y, Gonen O, Inglese M et al (2004) Neuronal cell injury precedes brain atrophy in multiple sclerosis. Neurology 62:624–627PubMedGoogle Scholar
  44. 44.
    Roser W, Hagberg G, Mader I et al (1995) Proton MRS of gadolinium-enhancing MS plaques and metabolic changes in normal-appearing white matter. Magn Reson Med 33:811–817PubMedCrossRefGoogle Scholar
  45. 45.
    Rovira A, Pericot I, Alonso J et al (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. Am J Neuroradiol 23:989–994PubMedGoogle Scholar
  46. 46.
    Dietrich RB, Bradley WG Jr (1988) Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology 168:203–206PubMedGoogle Scholar
  47. 47.
    Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L (2001) Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 185:19–26PubMedCrossRefGoogle Scholar
  48. 48.
    Buettner GR, Schafer FQ (2000) Free radicals, oxidants, and antioxidants. Teratology 62:234PubMedCrossRefGoogle Scholar
  49. 49.
    Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 1012:252–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Y. Ge
    • 1
  • M. Law
    • 1
  • M. Inglese
    • 1
  • R.I. Grossman
    • 1
  1. 1.Department of RadiologyCenter for Biomedical Imaging New York University School of MedicineNew YorkUSA

Personalised recommendations