Advertisement

T1 Black Holes and Gray Matter Damage

  • M. Neema
  • V.S.R. Dandamudi
  • A. Arora
  • J. Stankiewicz
  • R. Bakshi
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Magnetic resonance imaging (MRI) has become important in the early diagnosis and monitoring of various neurologic disorders including multiple sclerosis (MS). MRI has emerged as a key supportive therapeutic outcome measure in MS-related clinical trials. The limitations of conventional MRI surrogates have driven researchers to develop better biomarkers, including those capturing destructive aspects of the disease. In this chapter, we discuss the most recent data highlighting the role of hypointense lesions on T1-weighted images (black holes; BH) and gray matter (GM) damage in the MRI assessment of MS. We focus on the most relevant pathologic, MRI, and clinical correlation studies addressing BH and GM injury.

Keywords

Black Hole Multiple Sclerosis Expand Disability Status Scale Glatiramer Acetate Conventional Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnato F, Jeffries N, Richert ND et al (2003) Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 126:1782–1789PubMedCrossRefGoogle Scholar
  2. 2.
    Bakshi R, Minagar A, Jaisani Z, Wolinsky JS (2005) Imaging of multiple sclerosis: role in neurotherapeutics. NeuroRx 2:277–303PubMedCrossRefGoogle Scholar
  3. 3.
    van Walderveen MA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288PubMedGoogle Scholar
  4. 4.
    Bitsch A, Kuhlmann T, Stadelmann C et al (2001) A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 49:793–796PubMedCrossRefGoogle Scholar
  5. 5.
    Enzinger C, Ropele S, Smith S et al (2004) Accelerated evolution of brain atrophy and “black holes” in MS patients with APOE-epsilon 4. Ann Neurol 55:563–569PubMedCrossRefGoogle Scholar
  6. 6.
    van Waesberghe JH, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spinecho and magnetization transfer MR. Am J Neuroradiol 19:675–683PubMedGoogle Scholar
  7. 7.
    Truyen L, van Waesberghe JH, vanWalderveen MA et al (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476PubMedGoogle Scholar
  8. 8.
    Sanfilipo MP, Benedict RH, Sharma J et al (2005) The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 26:1068–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Zivadinov R, Leist TP (2005) Clinical-magnetic resonance imaging correlations in multiple sclerosis. J Neuroimaging 15:10S–21SPubMedCrossRefGoogle Scholar
  10. 10.
    Filippi M, Rovaris M, Rocca MA et al (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57:731–733PubMedGoogle Scholar
  11. 11.
    Dalton CM, Miszkiel KA, Barker GJ et al (2004) Effect of natalizumab on conversion of gadolinium enhancing lesions to T1 hypointense lesions in relapsing multiple sclerosis. J Neurol 251:407–413PubMedCrossRefGoogle Scholar
  12. 12.
    Simon JH, Lull J, Jacobs LD et al (2000) A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Multiple Sclerosis Collaborative Research Group. Neurology 55:185–192PubMedGoogle Scholar
  13. 13.
    Barkhof F, van Waesberghe JH, Filippi M et al (2001) T(1) hypointense lesions in secondary progressive multiple sclerosis: effect of interferon beta-1b treatment. Brain 124:1396–1402PubMedCrossRefGoogle Scholar
  14. 14.
    Comi G, Filippi M, Wolinsky JS (2001) European/Canadian multicenter, doubleblind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49:290–297PubMedCrossRefGoogle Scholar
  15. 15.
    Kidd D, Barkhof F, McConnell R et al (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26PubMedCrossRefGoogle Scholar
  16. 16.
    Peterson JW, Bo L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400PubMedCrossRefGoogle Scholar
  17. 17.
    Roemer S, Stadelmann C, Bruck W et al (2006) Cortical demyelination is present in early multiple sclerosis. Neurology 66(Suppl2):A93–A94Google Scholar
  18. 18.
    Bo L, Vedeler CA, Nyland HI et al (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732PubMedGoogle Scholar
  19. 19.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedCrossRefGoogle Scholar
  20. 20.
    Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748PubMedCrossRefGoogle Scholar
  21. 21.
    Geurts JJ, Pouwels PJ, Uitdehaag BM et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260PubMedCrossRefGoogle Scholar
  22. 22.
    Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170PubMedCrossRefGoogle Scholar
  23. 23.
    Dalton CM, Chard DT, Davies GR et al (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107PubMedCrossRefGoogle Scholar
  24. 24.
    Valsasina P, Benedetti B, Rovaris M et al (2005) Evidence for progressive gray matter loss in patients with relapsing-remitting MS. Neurology 65:1126–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Bermel RA, Innus MD, Tjoa CW, Bakshi R (2003) Selective caudate atrophy in multiple sclerosis: a 3D MRI parcellation study. Neuroreport 14:335–339PubMedCrossRefGoogle Scholar
  26. 26.
    Wylezinska M, Cifelli A, Jezzard P et al (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60:1949–1954PubMedGoogle Scholar
  27. 27.
    Prinster A, Quarantelli M, Orefice G et al (2006) Grey matter loss in relapsing-remitting multiple sclerosis: a voxel-based morphometry study. Neuroimage 29:859–867PubMedCrossRefGoogle Scholar
  28. 28.
    Inglese M, Liu S, Babb JS et al (2004) Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 63:170–172PubMedGoogle Scholar
  29. 29.
    Audoin B, Ranjeva JP, Au Duong MV et al (2004) Voxel-based analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis. J Magn Reson Imaging 20:765–771PubMedCrossRefGoogle Scholar
  30. 30.
    Rovaris M, Gallo A, Valsasina P et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24:1139–1146PubMedCrossRefGoogle Scholar
  31. 31.
    Bakshi R, Benedict RH, Bermel RA et al (2002) T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59:62–68PubMedCrossRefGoogle Scholar
  32. 32.
    Brass SD, Chen N, Mulkern R, Bakshi R (2006) Magnetic resonance imaging of iron deposition in neurologic disorders. Top Magn Reson Imaging 17:31–40PubMedCrossRefGoogle Scholar
  33. 33.
    Sanfilipo MP, Benedict RH, Weinstock-Guttman B, Bakshi R (2006) Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66:685–692PubMedCrossRefGoogle Scholar
  34. 34.
    Morgen K, Sammer G, Courtney SM et al (2006) Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS. Neuroimage 30:891–898PubMedCrossRefGoogle Scholar
  35. 35.
    Tjoa CW, Benedict RH, Weinstock-Guttman B et al (2005) MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. J Neurol Sci 234:17–24PubMedCrossRefGoogle Scholar
  36. 36.
    Niepel G, Tench CR, Morgan PS et al (2006) Deep gray matter and fatigue in MS A T1 relaxation time study. J Neurol 253:896–902PubMedCrossRefGoogle Scholar
  37. 37.
    Brass SD, Benedict R, Weinstock-Guttman B et al (2006) Cognitive impairment is associated with subcortical MRI gray matter T2 hypointensity in multiple sclerosis. Mult Scler 12:437–444PubMedCrossRefGoogle Scholar
  38. 38.
    Houtchens MK, Benedict R, Killiany R et al (2005) Thalamic atrophy in multiple sclerosis: Clinical-MRI correlations. Neurology 64(Suppl1):A260Google Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • M. Neema
    • 1
  • V.S.R. Dandamudi
    • 1
  • A. Arora
    • 1
  • J. Stankiewicz
    • 1
  • R. Bakshi
    • 1
  1. 1.Brigham & Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations