Skip to main content

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 1405 Accesses

Abstract

Neurophysiological methods, particularly evoked potentials (EPs; also known as evoked responses), are widely applied in the functional assessment of multiple sclerosis (MS), since they provide a quite reliable, even though indirect, measure of the extent of demyelination or axonal loss in a given nerve pathway. For this reason, they are used to indicate the involvement of sensory and motor pathways in the presence of vague disturbances and to detect clinically silent lesions, even though the latter application has been greatly reduced since the development of magnetic resonance imaging (MRI), which is more sensitive in detecting subclinical lesions. Nevertheless, the information provided by EPs is more strictly related to function than is the information obtained from structural MRI techniques. As O’Connor et al. [1] point out, it is impossible to “confidentially predict, from examining an MS patient’s cranial MRI, what the clinical findings or EDSS score will be.” In fact, the severity of the disease, assessed clinically, correlates well with the degree of neurophysiological abnormality found [24]. We briefly review the application of EPs in the assessment of the pathophysiology, diagnosis, and monitoring of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Connor P, Marchetti P, Lee L, Perera M (1998) Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis. Ann Neurol 44:404–407

    Article  PubMed  CAS  Google Scholar 

  2. Nuwer MR, Packwood JW, Myers LW et al (1987) Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology 37:1754–1761

    PubMed  CAS  Google Scholar 

  3. Filippi M, Campi A, Mammi S et al (1995) Brain magnetic resonance imaging and multimodal evoked potentials in benign and secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatr 58:31–37

    Article  PubMed  CAS  Google Scholar 

  4. Leocani L, Rovaris M, Boneschi FM et al (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77:1030–1035

    Article  PubMed  CAS  Google Scholar 

  5. Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: clinicopathological comparison with multiple sclerosis. Arch Neurol 36:490–497

    PubMed  CAS  Google Scholar 

  6. Trapp BD, Peterson J, Ransohoff RM. et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  7. Scolding N, Franklin R (1998) Axon loss in multiple sclerosis. Lancet 352:340–341

    Article  PubMed  CAS  Google Scholar 

  8. Ritchie JM, Rogart RB (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci USA 74:211–215

    Article  PubMed  CAS  Google Scholar 

  9. McDonald WI. (1963) The effects of experimental demyelination on conduction in peripheral nerve: a histological and electrophysiological study. II. Electrophysiological observations. Brain 86:501–524

    Article  PubMed  CAS  Google Scholar 

  10. McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598

    Article  PubMed  CAS  Google Scholar 

  11. Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated fibres. J Physiol (Lond) 227:323–350

    CAS  Google Scholar 

  12. Moreau T, Coles A, Wing M et al (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119:225–237

    Article  PubMed  Google Scholar 

  13. Koller H, Siebler M, Hartung HP (1997) Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 52:1–26

    Article  PubMed  CAS  Google Scholar 

  14. Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    Article  PubMed  CAS  Google Scholar 

  15. Emerson RG (1998) Evoked potentials in clinical trials for multiple sclerosis. J Clin Neurophysiol 15:109–116

    Article  PubMed  CAS  Google Scholar 

  16. Comi G, Locatelli T, Leocani L et al (1999) Can evoked potentials be useful in monitoring multiple sclerosis evolution? Electroencephalogr Clin Neurophysiol Suppl 50:349–357

    PubMed  CAS  Google Scholar 

  17. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  PubMed  CAS  Google Scholar 

  18. McGavern DB, Murray PD, Rivera-Quinones C. et al (2000) Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following demyelination in a chronic inflammatory model of multiple sclerosis. Brain 3:519–531

    Article  Google Scholar 

  19. Leocani L, Comi G (2000) Neurophysiological investigations in multiple sclerosis. Curr Opin Neurol 13:255–261

    Article  PubMed  CAS  Google Scholar 

  20. Gronseth GS, Ashman EJ (2000) Practice parameter: the usefulness of evoked potentials in identifying clinically silent lesions in patients with suspected multiple sclerosis (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1720–1725

    PubMed  CAS  Google Scholar 

  21. Filippini G, Comi G, Cosi V et al (1994) Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J Neurol 241:132–137

    Article  PubMed  CAS  Google Scholar 

  22. Frederiksen JL, Petrera J, Larsson HBW et al (1996) Serial MRI, VEP, SEP, and biotesiometry in acute optic neuritis: value of baseline results to predict the development of new lesions at one-year follow-up. Acta Neurol Scand 93:246–252

    Article  PubMed  CAS  Google Scholar 

  23. Ghezzi A, Martinelli V, Torri V et al (1999) Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol 246:770–775

    Article  PubMed  CAS  Google Scholar 

  24. Comi G, Leocani L, Medaglini S et al (1999) Measuring evoked responses in multiple sclerosis. Mult Scler 5:263–267

    PubMed  CAS  Google Scholar 

  25. Parisi V, Pierelli F, Restuccia R et al (1998) Impaired VEP after photostress response in multiple sclerosis patients previously affected by optic neuritis. Electroencephalogr Clin Neurophysiol 108:73–79

    Article  PubMed  CAS  Google Scholar 

  26. Onofrj M, Bazzano S, Malatesta G, Gambi D (1990) Pathophysiology of delayed evoked potentials in multiple sclerosis. Funct Neurol 5:301–319

    PubMed  CAS  Google Scholar 

  27. Humm AM, Beer S, Kool J et al (2004) Quantification of Uhthoff’s phenomenon in multiple sclerosis: a magnetic stimulation study. Clin Neurophysiol 115:2493–2501

    Article  PubMed  CAS  Google Scholar 

  28. McDonald W, Compston D, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  29. Poser CM (2005) The diagnosis and management of multiple sclerosis. Acta Neurol Scand 112:199–201

    Article  PubMed  CAS  Google Scholar 

  30. Leocani L, Martinelli V, Natali-Sora MG et al (2003) Somatosensory evoked potentials and sensory involvement in multiple sclerosis: comparison with clinical findings and quantitative sensory tests. Mult Scler 9:275–279

    Article  PubMed  Google Scholar 

  31. Fukutake T, Kuwabara S, Kaneko M et al (1998) Sensory impairments in spinal multiple sclerosis: a combined clinical, magnetic resonance imaging and somatosensory evoked potential study. Clin Neurol Neurosurg 100:199–204

    Article  PubMed  CAS  Google Scholar 

  32. Weinstock-Guttman B, Baier M, Stockton R et al (2003) Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis. Mult Scler 9:529–534

    Article  PubMed  CAS  Google Scholar 

  33. Van der Kamp W, Maertens de Noordhout A, Thompson PD et al (1991) Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis. Ann Neurol 29:6–12

    Article  PubMed  Google Scholar 

  34. Fuhr P, Borggrefe-Chappuis A, Schindler C et al (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124:2162–2168

    Article  PubMed  CAS  Google Scholar 

  35. Facchetti D, Mai R, Colombo A et al (1994) Limited clinical significance of traditional and quantitative EEG in multiple sclerosis. Acta Neurol Belg 94:245–250

    PubMed  CAS  Google Scholar 

  36. Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  37. Kira J, Tobimatsu S, Goto I, Hasuo K (1993) Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J Neurol Sci 117:179–185

    Article  PubMed  CAS  Google Scholar 

  38. Sater RA, Rostami AM, Galetta S et al (1999) Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J Neurol Sci 171:79–83

    Article  PubMed  CAS  Google Scholar 

  39. Kidd D, Thompson PD, Day BL et al (1998) Central motor conduction time in progressive multiple sclerosis: correlations with MRI and disease activity. Brain 121:1109–1116

    Article  PubMed  Google Scholar 

  40. Brusa A, Jones SJ, Kapoor R et al (1999) Long-term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potentials. J Neurol 246:776–782

    Article  PubMed  CAS  Google Scholar 

  41. Frederiksen JL, Petrera J (1999) Serial visual evoked potential in 90 untreated patients with acute optic neuritis. Surv Ophthalmol 44:S54–S62

    Article  PubMed  Google Scholar 

  42. Andersson T, Persson A (1990) Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. Electroencephalogr Clin Neurophysiol 30:205–211

    Google Scholar 

  43. Chiappa KH (1980) Pattern shift visual, brainstem auditory and short latency somatosensory evoked potentials in multiple sclerosis. Neurology 30:110–123

    PubMed  CAS  Google Scholar 

  44. Khosbin S, Hallett M (1981) Multimodality evoked potentials and blink reflex in multiple sclerosis. Neurology 31:138–144

    Google Scholar 

  45. Trojaborg W, Petersen E (1979) Visual and somatosensory evoked potentials in multiple sclerosis. J Neurol Neurosurg Psychiat 42:323–330

    PubMed  CAS  Google Scholar 

  46. Comi G, Martinelli V, Medaglini S et al (1989) Correlation between multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis. J Neurol 236:4–8

    Article  PubMed  CAS  Google Scholar 

  47. Dawson JW (1916) The histology of disseminated sclerosis. Edinburgh Med J (NS) 17:311–410

    Google Scholar 

  48. Kallmann BA, Fackelmann S, Toyka KV et al (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12:58–65

    Article  PubMed  CAS  Google Scholar 

  49. Kapoor R, Miller DH, Jones SJ et al (1998) Effects of intravenous methylprednisolone on outcome in MRI-based prognostic subgroups in acute optic neuritis. Neurology 50:230–237

    Article  PubMed  CAS  Google Scholar 

  50. Sheean GJ, Murray NM, Rothwell JC et al (1998) An open-labelled clinical and electrophysiological study of 3,4-diaminopyridine in the treatment of fatigue in multiple sclerosis. Brain 121:967–975

    Article  PubMed  Google Scholar 

  51. Schubert M, Wohlfart K, Rollnik JD, Dengler R (1998) Walking and fatigue in multiple sclerosis: the role of the corticospinal system. Muscle Nerve 21:1068–1070

    Article  PubMed  CAS  Google Scholar 

  52. Auer C, Siebner HR, Dressnandt J, Conrad B (1999) Intrathecal baclofen increases corticospinal output to hand muscles in multiple sclerosis. Neurology 52:1298–1299

    PubMed  CAS  Google Scholar 

  53. White AT, Petajan JH (2004) Physiological measures of therapeutic response to interferon beta-1a treatment in remitting-relapsing MS. Clin Neurophysiol 115:2364–2371

    Article  PubMed  CAS  Google Scholar 

  54. Humm AM, Z’Graggen WJ, Buhler R et al (2006) Quantification of central motor conduction deficits in multiple sclerosis patients before and after treatment of acute exacerbation by methylprednisolone. J Neurol Neurosurg Psychiat 77:345–350

    Article  PubMed  CAS  Google Scholar 

  55. Rao SM, Leo GJ, Bernardin L, Unverzagt (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns and predictions. Neurology 41:685–691

    PubMed  CAS  Google Scholar 

  56. Filley CM, Heaton RK, Nelson LM et al (1989) A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Arch Neurol 46:157–161

    PubMed  CAS  Google Scholar 

  57. Comi G, Filippi M, Martinelli V et al (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115:S66–S73

    Article  PubMed  Google Scholar 

  58. Rao SM (1990) Multiple sclerosis. In: Cummings JL (ed) Subcortical dementia. Oxford University Press, New York, pp 164–180

    Google Scholar 

  59. Mahler ME, Benson DF (1990) Cognitive dysfunction in multiple sclerosis: a subcortical dementia? In: Rao SM (ed) Neurobehavioral aspects of multiple sclerosis. Oxford University Press, New York, pp 88–101

    Google Scholar 

  60. Damian MS, Schilling G, Bachmann G et al (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90:430–436

    Article  PubMed  CAS  Google Scholar 

  61. Miki Y, Grossman RI, Udupa JK et al (1998) Isolated U-fiber involvement in MS: preliminary observations. Neurology 50:1301–1306

    PubMed  CAS  Google Scholar 

  62. Locatelli T, Filippi M, Martinelli V et al (1993) EEG mapping in multiple sclerosis. Riv Neurobiol 39:233–237

    Google Scholar 

  63. Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143

    Article  PubMed  CAS  Google Scholar 

  64. Rao SM, Leo GJ, St Aubin-Faubert P (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11:699–712

    Article  PubMed  CAS  Google Scholar 

  65. Franklin GM, Nelson LM, Filter CM, Heaton RK (1989) Cognitive loss in multiple sclerosis. Arch Neurol 46:162–167

    PubMed  CAS  Google Scholar 

  66. Swirsky-Sacchetti T, Mitchell DR, Seward J et al (1992) Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology 42:1291–1295

    PubMed  CAS  Google Scholar 

  67. Foong J, Rozewicz L, Quaghebeur G et al (1997) Executive functions in multiple sclerosis: the role of frontal lobe pathology. Brain 120:15–16

    Article  PubMed  Google Scholar 

  68. Rovaris M, Filippi M, Falautano M et al (1998) Relationship between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    PubMed  CAS  Google Scholar 

  69. Desmedt JE (1980) P300 in serial tasks: an essential post-decision closure mechanism. Progr Brain Res 54:682–686

    CAS  Google Scholar 

  70. Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 197:792–795

    Article  PubMed  CAS  Google Scholar 

  71. Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potentials P300 in multiple sclerosis: relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50

    PubMed  CAS  Google Scholar 

  72. Newton MR, Barrett G, Callanan MM, Towell AD (1989) ERP P300 in multiple sclerosis. Brain 112:1636–1660

    Article  Google Scholar 

  73. Giesser BS, Schroeder MM, La Rocca NG et al (1992) Endogenous event-related potentials as indices of dementia in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol 82:320–329

    Article  PubMed  CAS  Google Scholar 

  74. Piras MR, Magnano I, Canu ED et al (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885

    Article  PubMed  CAS  Google Scholar 

  75. Jung J, Morlet D, Mercier B et al (2006) Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients. Clin Neurophysiol. 117:85–93

    Article  PubMed  Google Scholar 

  76. Pelosi L, Geesken JM, Holly M et al (1997) Working memory impairment in early multiple sclerosis: evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120:2039–2058

    Article  PubMed  Google Scholar 

  77. Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  PubMed  CAS  Google Scholar 

  78. Filipovic SR, Drulovic J, Stojsavlievic N, Levic Z (1997) The effects of high-dose intravenous methylprednisolone on event-related potentials in patients with multiple sclerosis. J Neurol Sci 152:147–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Leocani, L., Comi, G. (2007). Neurophysiology. In: Filippi, M., Rovaris, M., Comi, G. (eds) Neurodegeneration in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-0391-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0391-0_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0390-3

  • Online ISBN: 978-88-470-0391-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics