Advertisement

Neurophysiology

  • L. Leocani
  • G. Comi
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Neurophysiological methods, particularly evoked potentials (EPs; also known as evoked responses), are widely applied in the functional assessment of multiple sclerosis (MS), since they provide a quite reliable, even though indirect, measure of the extent of demyelination or axonal loss in a given nerve pathway. For this reason, they are used to indicate the involvement of sensory and motor pathways in the presence of vague disturbances and to detect clinically silent lesions, even though the latter application has been greatly reduced since the development of magnetic resonance imaging (MRI), which is more sensitive in detecting subclinical lesions. Nevertheless, the information provided by EPs is more strictly related to function than is the information obtained from structural MRI techniques. As O’Connor et al. [1] point out, it is impossible to “confidentially predict, from examining an MS patient’s cranial MRI, what the clinical findings or EDSS score will be.” In fact, the severity of the disease, assessed clinically, correlates well with the degree of neurophysiological abnormality found [2, 3, 4]. We briefly review the application of EPs in the assessment of the pathophysiology, diagnosis, and monitoring of MS.

Keywords

Multiple Sclerosis Expand Disability Status Scale Optic Neuritis Motor Evoke Potential Visual Evoke Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Connor P, Marchetti P, Lee L, Perera M (1998) Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis. Ann Neurol 44:404–407PubMedCrossRefGoogle Scholar
  2. 2.
    Nuwer MR, Packwood JW, Myers LW et al (1987) Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology 37:1754–1761PubMedGoogle Scholar
  3. 3.
    Filippi M, Campi A, Mammi S et al (1995) Brain magnetic resonance imaging and multimodal evoked potentials in benign and secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatr 58:31–37PubMedCrossRefGoogle Scholar
  4. 4.
    Leocani L, Rovaris M, Boneschi FM et al (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77:1030–1035PubMedCrossRefGoogle Scholar
  5. 5.
    Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: clinicopathological comparison with multiple sclerosis. Arch Neurol 36:490–497PubMedGoogle Scholar
  6. 6.
    Trapp BD, Peterson J, Ransohoff RM. et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  7. 7.
    Scolding N, Franklin R (1998) Axon loss in multiple sclerosis. Lancet 352:340–341PubMedCrossRefGoogle Scholar
  8. 8.
    Ritchie JM, Rogart RB (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci USA 74:211–215PubMedCrossRefGoogle Scholar
  9. 9.
    McDonald WI. (1963) The effects of experimental demyelination on conduction in peripheral nerve: a histological and electrophysiological study. II. Electrophysiological observations. Brain 86:501–524PubMedCrossRefGoogle Scholar
  10. 10.
    McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598PubMedCrossRefGoogle Scholar
  11. 11.
    Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated fibres. J Physiol (Lond) 227:323–350Google Scholar
  12. 12.
    Moreau T, Coles A, Wing M et al (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119:225–237PubMedCrossRefGoogle Scholar
  13. 13.
    Koller H, Siebler M, Hartung HP (1997) Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 52:1–26PubMedCrossRefGoogle Scholar
  14. 14.
    Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241PubMedCrossRefGoogle Scholar
  15. 15.
    Emerson RG (1998) Evoked potentials in clinical trials for multiple sclerosis. J Clin Neurophysiol 15:109–116PubMedCrossRefGoogle Scholar
  16. 16.
    Comi G, Locatelli T, Leocani L et al (1999) Can evoked potentials be useful in monitoring multiple sclerosis evolution? Electroencephalogr Clin Neurophysiol Suppl 50:349–357PubMedGoogle Scholar
  17. 17.
    Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278PubMedCrossRefGoogle Scholar
  18. 18.
    McGavern DB, Murray PD, Rivera-Quinones C. et al (2000) Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following demyelination in a chronic inflammatory model of multiple sclerosis. Brain 3:519–531CrossRefGoogle Scholar
  19. 19.
    Leocani L, Comi G (2000) Neurophysiological investigations in multiple sclerosis. Curr Opin Neurol 13:255–261PubMedCrossRefGoogle Scholar
  20. 20.
    Gronseth GS, Ashman EJ (2000) Practice parameter: the usefulness of evoked potentials in identifying clinically silent lesions in patients with suspected multiple sclerosis (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1720–1725PubMedGoogle Scholar
  21. 21.
    Filippini G, Comi G, Cosi V et al (1994) Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J Neurol 241:132–137PubMedCrossRefGoogle Scholar
  22. 22.
    Frederiksen JL, Petrera J, Larsson HBW et al (1996) Serial MRI, VEP, SEP, and biotesiometry in acute optic neuritis: value of baseline results to predict the development of new lesions at one-year follow-up. Acta Neurol Scand 93:246–252PubMedCrossRefGoogle Scholar
  23. 23.
    Ghezzi A, Martinelli V, Torri V et al (1999) Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol 246:770–775PubMedCrossRefGoogle Scholar
  24. 24.
    Comi G, Leocani L, Medaglini S et al (1999) Measuring evoked responses in multiple sclerosis. Mult Scler 5:263–267PubMedGoogle Scholar
  25. 25.
    Parisi V, Pierelli F, Restuccia R et al (1998) Impaired VEP after photostress response in multiple sclerosis patients previously affected by optic neuritis. Electroencephalogr Clin Neurophysiol 108:73–79PubMedCrossRefGoogle Scholar
  26. 26.
    Onofrj M, Bazzano S, Malatesta G, Gambi D (1990) Pathophysiology of delayed evoked potentials in multiple sclerosis. Funct Neurol 5:301–319PubMedGoogle Scholar
  27. 27.
    Humm AM, Beer S, Kool J et al (2004) Quantification of Uhthoff’s phenomenon in multiple sclerosis: a magnetic stimulation study. Clin Neurophysiol 115:2493–2501PubMedCrossRefGoogle Scholar
  28. 28.
    McDonald W, Compston D, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127PubMedCrossRefGoogle Scholar
  29. 29.
    Poser CM (2005) The diagnosis and management of multiple sclerosis. Acta Neurol Scand 112:199–201PubMedCrossRefGoogle Scholar
  30. 30.
    Leocani L, Martinelli V, Natali-Sora MG et al (2003) Somatosensory evoked potentials and sensory involvement in multiple sclerosis: comparison with clinical findings and quantitative sensory tests. Mult Scler 9:275–279PubMedCrossRefGoogle Scholar
  31. 31.
    Fukutake T, Kuwabara S, Kaneko M et al (1998) Sensory impairments in spinal multiple sclerosis: a combined clinical, magnetic resonance imaging and somatosensory evoked potential study. Clin Neurol Neurosurg 100:199–204PubMedCrossRefGoogle Scholar
  32. 32.
    Weinstock-Guttman B, Baier M, Stockton R et al (2003) Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis. Mult Scler 9:529–534PubMedCrossRefGoogle Scholar
  33. 33.
    Van der Kamp W, Maertens de Noordhout A, Thompson PD et al (1991) Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis. Ann Neurol 29:6–12PubMedCrossRefGoogle Scholar
  34. 34.
    Fuhr P, Borggrefe-Chappuis A, Schindler C et al (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124:2162–2168PubMedCrossRefGoogle Scholar
  35. 35.
    Facchetti D, Mai R, Colombo A et al (1994) Limited clinical significance of traditional and quantitative EEG in multiple sclerosis. Acta Neurol Belg 94:245–250PubMedGoogle Scholar
  36. 36.
    Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  37. 37.
    Kira J, Tobimatsu S, Goto I, Hasuo K (1993) Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J Neurol Sci 117:179–185PubMedCrossRefGoogle Scholar
  38. 38.
    Sater RA, Rostami AM, Galetta S et al (1999) Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J Neurol Sci 171:79–83PubMedCrossRefGoogle Scholar
  39. 39.
    Kidd D, Thompson PD, Day BL et al (1998) Central motor conduction time in progressive multiple sclerosis: correlations with MRI and disease activity. Brain 121:1109–1116PubMedCrossRefGoogle Scholar
  40. 40.
    Brusa A, Jones SJ, Kapoor R et al (1999) Long-term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potentials. J Neurol 246:776–782PubMedCrossRefGoogle Scholar
  41. 41.
    Frederiksen JL, Petrera J (1999) Serial visual evoked potential in 90 untreated patients with acute optic neuritis. Surv Ophthalmol 44:S54–S62PubMedCrossRefGoogle Scholar
  42. 42.
    Andersson T, Persson A (1990) Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. Electroencephalogr Clin Neurophysiol 30:205–211Google Scholar
  43. 43.
    Chiappa KH (1980) Pattern shift visual, brainstem auditory and short latency somatosensory evoked potentials in multiple sclerosis. Neurology 30:110–123PubMedGoogle Scholar
  44. 44.
    Khosbin S, Hallett M (1981) Multimodality evoked potentials and blink reflex in multiple sclerosis. Neurology 31:138–144Google Scholar
  45. 45.
    Trojaborg W, Petersen E (1979) Visual and somatosensory evoked potentials in multiple sclerosis. J Neurol Neurosurg Psychiat 42:323–330PubMedGoogle Scholar
  46. 46.
    Comi G, Martinelli V, Medaglini S et al (1989) Correlation between multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis. J Neurol 236:4–8PubMedCrossRefGoogle Scholar
  47. 47.
    Dawson JW (1916) The histology of disseminated sclerosis. Edinburgh Med J (NS) 17:311–410Google Scholar
  48. 48.
    Kallmann BA, Fackelmann S, Toyka KV et al (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12:58–65PubMedCrossRefGoogle Scholar
  49. 49.
    Kapoor R, Miller DH, Jones SJ et al (1998) Effects of intravenous methylprednisolone on outcome in MRI-based prognostic subgroups in acute optic neuritis. Neurology 50:230–237PubMedCrossRefGoogle Scholar
  50. 50.
    Sheean GJ, Murray NM, Rothwell JC et al (1998) An open-labelled clinical and electrophysiological study of 3,4-diaminopyridine in the treatment of fatigue in multiple sclerosis. Brain 121:967–975PubMedCrossRefGoogle Scholar
  51. 51.
    Schubert M, Wohlfart K, Rollnik JD, Dengler R (1998) Walking and fatigue in multiple sclerosis: the role of the corticospinal system. Muscle Nerve 21:1068–1070PubMedCrossRefGoogle Scholar
  52. 52.
    Auer C, Siebner HR, Dressnandt J, Conrad B (1999) Intrathecal baclofen increases corticospinal output to hand muscles in multiple sclerosis. Neurology 52:1298–1299PubMedGoogle Scholar
  53. 53.
    White AT, Petajan JH (2004) Physiological measures of therapeutic response to interferon beta-1a treatment in remitting-relapsing MS. Clin Neurophysiol 115:2364–2371PubMedCrossRefGoogle Scholar
  54. 54.
    Humm AM, Z’Graggen WJ, Buhler R et al (2006) Quantification of central motor conduction deficits in multiple sclerosis patients before and after treatment of acute exacerbation by methylprednisolone. J Neurol Neurosurg Psychiat 77:345–350PubMedCrossRefGoogle Scholar
  55. 55.
    Rao SM, Leo GJ, Bernardin L, Unverzagt (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns and predictions. Neurology 41:685–691PubMedGoogle Scholar
  56. 56.
    Filley CM, Heaton RK, Nelson LM et al (1989) A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Arch Neurol 46:157–161PubMedGoogle Scholar
  57. 57.
    Comi G, Filippi M, Martinelli V et al (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115:S66–S73PubMedCrossRefGoogle Scholar
  58. 58.
    Rao SM (1990) Multiple sclerosis. In: Cummings JL (ed) Subcortical dementia. Oxford University Press, New York, pp 164–180Google Scholar
  59. 59.
    Mahler ME, Benson DF (1990) Cognitive dysfunction in multiple sclerosis: a subcortical dementia? In: Rao SM (ed) Neurobehavioral aspects of multiple sclerosis. Oxford University Press, New York, pp 88–101Google Scholar
  60. 60.
    Damian MS, Schilling G, Bachmann G et al (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90:430–436PubMedCrossRefGoogle Scholar
  61. 61.
    Miki Y, Grossman RI, Udupa JK et al (1998) Isolated U-fiber involvement in MS: preliminary observations. Neurology 50:1301–1306PubMedGoogle Scholar
  62. 62.
    Locatelli T, Filippi M, Martinelli V et al (1993) EEG mapping in multiple sclerosis. Riv Neurobiol 39:233–237Google Scholar
  63. 63.
    Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143PubMedCrossRefGoogle Scholar
  64. 64.
    Rao SM, Leo GJ, St Aubin-Faubert P (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11:699–712PubMedCrossRefGoogle Scholar
  65. 65.
    Franklin GM, Nelson LM, Filter CM, Heaton RK (1989) Cognitive loss in multiple sclerosis. Arch Neurol 46:162–167PubMedGoogle Scholar
  66. 66.
    Swirsky-Sacchetti T, Mitchell DR, Seward J et al (1992) Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology 42:1291–1295PubMedGoogle Scholar
  67. 67.
    Foong J, Rozewicz L, Quaghebeur G et al (1997) Executive functions in multiple sclerosis: the role of frontal lobe pathology. Brain 120:15–16PubMedCrossRefGoogle Scholar
  68. 68.
    Rovaris M, Filippi M, Falautano M et al (1998) Relationship between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608PubMedGoogle Scholar
  69. 69.
    Desmedt JE (1980) P300 in serial tasks: an essential post-decision closure mechanism. Progr Brain Res 54:682–686Google Scholar
  70. 70.
    Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 197:792–795PubMedCrossRefGoogle Scholar
  71. 71.
    Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potentials P300 in multiple sclerosis: relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50PubMedGoogle Scholar
  72. 72.
    Newton MR, Barrett G, Callanan MM, Towell AD (1989) ERP P300 in multiple sclerosis. Brain 112:1636–1660CrossRefGoogle Scholar
  73. 73.
    Giesser BS, Schroeder MM, La Rocca NG et al (1992) Endogenous event-related potentials as indices of dementia in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol 82:320–329PubMedCrossRefGoogle Scholar
  74. 74.
    Piras MR, Magnano I, Canu ED et al (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885PubMedCrossRefGoogle Scholar
  75. 75.
    Jung J, Morlet D, Mercier B et al (2006) Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients. Clin Neurophysiol. 117:85–93PubMedCrossRefGoogle Scholar
  76. 76.
    Pelosi L, Geesken JM, Holly M et al (1997) Working memory impairment in early multiple sclerosis: evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120:2039–2058PubMedCrossRefGoogle Scholar
  77. 77.
    Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654PubMedCrossRefGoogle Scholar
  78. 78.
    Filipovic SR, Drulovic J, Stojsavlievic N, Levic Z (1997) The effects of high-dose intravenous methylprednisolone on event-related potentials in patients with multiple sclerosis. J Neurol Sci 152:147–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • L. Leocani
    • 1
  • G. Comi
    • 1
  1. 1.Department of NeurologyScientific Institute and University Ospedale San RaffaeleMilanItaly

Personalised recommendations