Incorporation of Other Biomarkers

  • S. Gnanapavan
  • G. Giovannoni
Part of the Topics in Neuroscience book series (TOPNEURO)


Ramòn y Cajal, considered by many to be the father of neuroscience, was the first to document in any great detail the complex structure and function of the human nervous system. In recognition of his achievements he was awarded the Nobel Prize in 1906, together with his contemporary, Camillo Golgi. Successive generations of neuroscientists added to his work, broadening our understanding of this field, but it was not until the Human Genome Project that it became possible to assimilate vast quantities of information from an entire genome or proteome. As a consequence, the number of biomolecules relevant to the study of neuronal biology and pathology has escalated. It therefore comes as no surprise to find that the literature on biomarkers is vast and encompasses a wide spectrum of disciplines from genetics to medical physics. This chapter focuses on the use of molecular biomarkers in neurodegeneration and the progress made so far.


Multiple Sclerosis Amyotrophic Lateral Sclerosis Mild Cognitive Impairment Glial Fibrillary Acidic Protein Multiple System Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(3):393–399PubMedCrossRefGoogle Scholar
  2. 2.
    Carden MJ, Schlaepfer WW, Lee VM (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260:9805–9817PubMedGoogle Scholar
  3. 3.
    Perrone Capano C, Pernas-Alonso R, di Porzio U (2001) Neurofilament homeostasis and motoneurone degeneration. Bioessays 23:24–33PubMedCrossRefGoogle Scholar
  4. 4.
    Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198PubMedCrossRefGoogle Scholar
  5. 5.
    Carpenter S (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18:841–851PubMedGoogle Scholar
  6. 6.
    Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470PubMedGoogle Scholar
  7. 7.
    Hirano A, Nakano I, Kurland LT et al (1984) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:471–480PubMedGoogle Scholar
  8. 8.
    Dickson DW, Feany MB, Yen SH et al (1996) Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick’s disease, and corticobasal degeneration. J Neural Transm 47(Suppl):31–46Google Scholar
  9. 9.
    de la Monte SM, Wands JR (1994) Diagnostic utility of quantitating neurofilament-immunoreactive Alzheimer’s disease lesions. J Histochem Cytochem 42:1625–1634PubMedGoogle Scholar
  10. 10.
    Arima K, Nakamura M, Sunohara N et al (1999) Immunohistochemical and ultrastructural characterization of neuritic clusters around ghost tangles in the hippocampal formation in progressive supranuclear palsy brains. Acta Neuropathol (Berl) 97:565–576CrossRefGoogle Scholar
  11. 11.
    Brettschneider J, Petzold A, Sussmuth SD et al (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66:852–856PubMedCrossRefGoogle Scholar
  12. 12.
    Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25–31PubMedCrossRefGoogle Scholar
  13. 13.
    Rosengren LE, Karlsson JE, Karlsson JO et al (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67:2013–2018PubMedCrossRefGoogle Scholar
  14. 14.
    Sjogren M, Blomberg M, Jonsson M et al (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66:510–516PubMedCrossRefGoogle Scholar
  15. 15.
    Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123(2):308–317PubMedCrossRefGoogle Scholar
  16. 16.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  17. 17.
    Norgren N, Sundstrom P, Svenningsson A et al (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63:1586–1590PubMedGoogle Scholar
  18. 18.
    Petzold A, Eikelenboom MJ, Keir G et al (2005) Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiat 76:206–211PubMedCrossRefGoogle Scholar
  19. 19.
    Petzold A, Eikelenboom MI, Keir G et al (2006) The new global multiple sclerosis severity score (MSSS) correlates with axonal but not glial biomarkers. Mult Scler 12:325–328PubMedCrossRefGoogle Scholar
  20. 20.
    Petzold A, Rejdak K, Plant GT (2004) Axonal degeneration and inflammation in acute optic neuritis. J Neurol Neurosurg Psychiat 75:1178–1180PubMedCrossRefGoogle Scholar
  21. 21.
    Brettschneider J, Petzold A, Junker A, Tumani H (2006) Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 12:143–148PubMedCrossRefGoogle Scholar
  22. 22.
    Griffin WS, Sheng JG, McKenzie JE et al (1998) Life-long overexpression of S100beta in Down’s syndrome: implications for Alzheimer pathogenesis. Neurobiol Aging 19:401–405PubMedCrossRefGoogle Scholar
  23. 23.
    Otto M, Wiltfang J, Schutz E et al (1998) Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study. BMJ 316:577–582PubMedGoogle Scholar
  24. 24.
    Petzold A, Eikelenboom MJ, Gveric D et al (2002) Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125:1462–1473PubMedCrossRefGoogle Scholar
  25. 25.
    Foerch C, Otto B, Singer OC et al (2004) Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 35:2160–2164PubMedCrossRefGoogle Scholar
  26. 26.
    Infante JR, Martinez A, Ochoa J et al (2003) Cerebrospinal fluid S-100 protein levels in neurological pathologies. J Physiol Biochem 59:255–261PubMedCrossRefGoogle Scholar
  27. 27.
    Petzold A, Jenkins R, Watt HC et al (2003) Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett 336:167–170PubMedCrossRefGoogle Scholar
  28. 28.
    Peskind ER, Griffin WS, Akama KT et al (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39:409–413PubMedCrossRefGoogle Scholar
  29. 29.
    Green AJ, Harvey RJ, Thompson EJ, Rossor MN (1997) Increased S100beta in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett 235:5–8PubMedCrossRefGoogle Scholar
  30. 30.
    Otto M, Bahn E, Wiltfang J et al (1998) Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis. Neurosci Lett 240:171–173PubMedCrossRefGoogle Scholar
  31. 31.
    Sussmuth SD, Tumani H, Ecker D, Ludolph AC (2003) Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett 353:57–60PubMedCrossRefGoogle Scholar
  32. 32.
    Michetti F, Massaro A, Murazio M (1979) The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett 11:171–175PubMedCrossRefGoogle Scholar
  33. 33.
    Massaro AR, Michetti F, Laudisio A, Bergonzi P (1985) Myelin basic protein and S-100 antigen in cerebrospinal fluid of patients with multiple sclerosis in the acute phase. Ital J Neurol Sci 6:53–56PubMedCrossRefGoogle Scholar
  34. 34.
    Missler U, Wandinger KP, Wiesmann M et al (1997) Acute exacerbation of multiple sclerosis increases plasma levels of S-100 protein. Acta Neurol Scand 96:142–144PubMedCrossRefGoogle Scholar
  35. 35.
    Lim ET, Petzold A, Leary SM et al (2004) Serum S100B in primary progressive multiple sclerosis patients treated with interferon-beta-1a. J Negat Results Biomed 3:4PubMedCrossRefGoogle Scholar
  36. 36.
    Buttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W (1997) S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 28:1961–1965PubMedGoogle Scholar
  37. 37.
    Aurell A, Rosengren LE, Karlsson B et al (1991) Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 22:1254–1258PubMedGoogle Scholar
  38. 38.
    Missler U, Wiesmann M, Friedrich C, Kaps M (1997) S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 28:1956–1960PubMedGoogle Scholar
  39. 39.
    Blennow K, Vanmechelen E (2003) CSF markers for pathogenic processes in Alzheimer’s disease: diagnostic implications and use in clinical neurochemistry. Brain Res Bull 61:235–242PubMedCrossRefGoogle Scholar
  40. 40.
    Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613PubMedCrossRefGoogle Scholar
  41. 41.
    Hampel H, Goernitz A, Buerger K (2003) Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and Abeta(1-42) proteins to phosphorylated tau protein. Brain Res Bull 61:243–253PubMedCrossRefGoogle Scholar
  42. 42.
    Hampel H, Mitchell A, Blennow K et al (2004) Core biological marker candidates of Alzheimer’s disease: perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm 111:247–272PubMedCrossRefGoogle Scholar
  43. 43.
    Morikawa Y, Arai H, Matsushita S et al (1999) Cerebrospinal fluid tau protein levels in demented and nondemented alcoholics. Alcohol Clin Exp Res 23:575–577PubMedGoogle Scholar
  44. 44.
    Andreasen N, Minthon L, Clarberg A et al (1999) Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology 53:1488–1494PubMedGoogle Scholar
  45. 45.
    Molina JA, Benito-León J, Jiménez-Jiménez FJ et al (1997) Tau protein concentrations in cerebrospinal fluid of non-demented Parkinson’s disease patients. Neurosci Lett 238:139–141PubMedCrossRefGoogle Scholar
  46. 46.
    Hulstaert F, Blennow K, Ivanoiu A et al (1999) Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 52:1555–1562PubMedGoogle Scholar
  47. 47.
    Paraskevas GP, Kapaki E, Liappas I et al (2005) The diagnostic value of cerebrospinal fluid tau protein in dementing and nondementing neuropsychiatric disorders. J Geriatr Psychiatry Neurol 18:163–173PubMedCrossRefGoogle Scholar
  48. 48.
    Andreasen N, Minthon L, Davidsson P et al (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58:373–379PubMedCrossRefGoogle Scholar
  49. 49.
    Otto M, Wiltfang J, Tumani H et al (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225:210–212PubMedCrossRefGoogle Scholar
  50. 50.
    Hesse C, Rosengren L, Vanmechelen E et al (2000) Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. J Alzheimers Dis 2:199–206PubMedGoogle Scholar
  51. 51.
    Brettschneider J, Maier M, Arda S et al (2005) Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult Scler 11:261–265PubMedCrossRefGoogle Scholar
  52. 52.
    Bulut M, Koksal O, Dogan S et al (2006) Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther 23:12–22PubMedGoogle Scholar
  53. 53.
    Arai H, Nakagawa T, Kosaka Y et al (1997) Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients. Alzheim Res 3:211–213Google Scholar
  54. 54.
    Hansson O, Zetterberg H, Buchhave P et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234PubMedCrossRefGoogle Scholar
  55. 55.
    Maruyama M, Arai H, Sugita M et al (2001) Cerebrospinal fluid amyloid beta(1-42) levels in the mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol 172:433–436PubMedCrossRefGoogle Scholar
  56. 56.
    Hock C, Golombowski S, Naser W, Muller-Spahn F (1995) Increased levels of tau protein in cerebrospinal fluid of patients with Alzheimer’s disease: correlation with degree of cognitive impairment. Ann Neurol 37:414–415PubMedCrossRefGoogle Scholar
  57. 57.
    Kanai M, Matsubara E, Isoe K et al (1998) Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: a study in Japan. Ann Neurol 44:17–26PubMedCrossRefGoogle Scholar
  58. 58.
    Andreasen N, Vanmechelen E, Van deVoorde A et al (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64:298–305PubMedGoogle Scholar
  59. 59.
    Arai H, Terajima M, Miura M et al (1995) Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol 38:649–652PubMedCrossRefGoogle Scholar
  60. 60.
    Vanmechelen E, Vanderstichele H, Davidsson P et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52PubMedCrossRefGoogle Scholar
  61. 61.
    Ishiguro K, Ohno H, Arai H et al (1999) Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci Lett 270:91–94PubMedCrossRefGoogle Scholar
  62. 62.
    Kohnken R, Buerger K, Zinkowski R et al (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 287:187–190PubMedCrossRefGoogle Scholar
  63. 63.
    Hu YY, He SS, Wang X et al (2002) Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzymesubstrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160:1269–1278PubMedGoogle Scholar
  64. 64.
    Buerger K, Zinkowski R, Teipel SJ et al (2003) Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231. Am J Psychiatry 160:376–379PubMedCrossRefGoogle Scholar
  65. 65.
    Buerger K, Zinkowski R, Teipel SJ et al (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59:1267–1272PubMedCrossRefGoogle Scholar
  66. 66.
    Buerger K, Teipel SJ, Zinkowski R et al (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59:627–629PubMedGoogle Scholar
  67. 67.
    Sjogren M, Davidsson P, Tullberg M et al (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiat 70:624–630PubMedCrossRefGoogle Scholar
  68. 68.
    Hesse C, Rosengren L, Andreasen N et al (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297:187–190PubMedCrossRefGoogle Scholar
  69. 69.
    Arai H, Ishiguro K, Ohno H et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol 166:201–203PubMedCrossRefGoogle Scholar
  70. 70.
    de Leon MJ, DeSanti S, Zinkowski R et al (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27:394–401PubMedCrossRefGoogle Scholar
  71. 71.
    Burkhard PR, Sanchez JC, Landis T, Hochstrasser DF (2001) CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 56:1528–1533PubMedGoogle Scholar
  72. 72.
    Tschampa HJ, Neumann M, Zerr I et al (2001) Patients with Alzheimer’s disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 71:33–39PubMedCrossRefGoogle Scholar
  73. 73.
    Collins S, Boyd A, Fletcher A et al (2000) Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. J Clin Neurosci 7:203–208PubMedCrossRefGoogle Scholar
  74. 74.
    Van EB, Quoilin S, Boons J et al (2003) A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 74:1210–1214CrossRefGoogle Scholar
  75. 75.
    Hsich G, Kenney K, Gibbs CJ et al (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930PubMedCrossRefGoogle Scholar
  76. 76.
    WHO (1998) Human transmissible spongiform encephalopathies. Weekly Epidemiol Rec 73:361–372Google Scholar
  77. 77.
    Zerr I, Pocchiari M, Collins S et al (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 55:811–815PubMedGoogle Scholar
  78. 78.
    Green AJ, Thompson EJ, Stewart GE et al (2001) Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 70:744–748PubMedCrossRefGoogle Scholar
  79. 79.
    Zeidler M, Sellar RJ, Collie DA et al (2000) The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 355:1412–1418PubMedCrossRefGoogle Scholar
  80. 80.
    Beal MF, Ferrante RJ, Browne SE et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654PubMedCrossRefGoogle Scholar
  81. 81.
    Ferrante RJ, Shinobu LA, Schulz JB et al (1997) Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42:326–334PubMedCrossRefGoogle Scholar
  82. 82.
    Tohgi H, Abe T, Yamazaki K et al (1999) Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 46:129–131PubMedCrossRefGoogle Scholar
  83. 83.
    Tohgi H, Abe T, Yamazaki K et al (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci Lett 269:52–54PubMedCrossRefGoogle Scholar
  84. 84.
    Ryberg H, Soderling AS, Davidsson P et al (2004) Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer’s disease. Neurochem Int 45:57–62PubMedCrossRefGoogle Scholar
  85. 85.
    Carney JM, Starke-Reed PE, Oliver CNet al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636PubMedCrossRefGoogle Scholar
  86. 86.
    Smith CD, Carney JM, Tatsumo T et al (1992) Protein oxidation in aging brain. Ann NY Acad Sci 663:110–119PubMedCrossRefGoogle Scholar
  87. 87.
    Aksenova MV, Aksenov MY, Payne RM et al (1999) Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord 10:158–165PubMedCrossRefGoogle Scholar
  88. 88.
    Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527PubMedCrossRefGoogle Scholar
  89. 89.
    Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38:691–695PubMedCrossRefGoogle Scholar
  90. 90.
    Bowling AC, Schulz JB, Brown RH, Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61:2322–2325PubMedCrossRefGoogle Scholar
  91. 91.
    Ferrante RJ, Browne SE, Shinobu LA et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074PubMedCrossRefGoogle Scholar
  92. 92.
    Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156PubMedCrossRefGoogle Scholar
  93. 93.
    Alam ZI, Daniel SE, Lees AJ et al (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329PubMedCrossRefGoogle Scholar
  94. 94.
    Przedborski S (2004) Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10:1–7PubMedCrossRefGoogle Scholar
  95. 95.
    Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiat 76:1046–1057PubMedCrossRefGoogle Scholar
  96. 96.
    Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70PubMedCrossRefGoogle Scholar
  97. 97.
    Eckert A, Marques CA, Keil U et al (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609PubMedCrossRefGoogle Scholar
  98. 98.
    Dragunow M, Faull RL, Lawlor P et al (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057PubMedGoogle Scholar
  99. 99.
    Puig B, Ferrer I(2001) Cell death signaling in the cerebellum in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 102:207–215Google Scholar
  100. 100.
    Probst-Cousin S, Rickert CH, Schmid KW, Gullotta F (1998) Cell death mechanisms in multiple system atrophy. J Neuropathol Exp Neurol 57:814–821PubMedCrossRefGoogle Scholar
  101. 101.
    Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58:459–471PubMedGoogle Scholar
  102. 102.
    Ilzecka J, Stelmasiak Z, Dobosz B (2001) Interleukin-1beta converting enzyme/caspase-1 (ICE/caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand 103:255–258PubMedCrossRefGoogle Scholar
  103. 103.
    Gervais FG, Xu D, Robertson GS et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406PubMedCrossRefGoogle Scholar
  104. 104.
    Takuma H, Tomiyama T, Kuida K, Mori H (2004) Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol 63:255–261PubMedGoogle Scholar
  105. 105.
    Masliah E, Mallory M, Alford M et al (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropathol Exp Neurol 57:1041–1052PubMedGoogle Scholar
  106. 106.
    Gamblin TC, Chen F, Zambrano A et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037PubMedCrossRefGoogle Scholar
  107. 107.
    Chung CW, Song YH, Kim IK et al (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 8:162–172PubMedCrossRefGoogle Scholar
  108. 108.
    Rissman RA, Poon WW, Blurton-Jones M et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130PubMedCrossRefGoogle Scholar
  109. 109.
    Kim YJ, Yi Y, Sapp E et al (2001) Caspase 3-cleaved N-terminal fragments of wildtype and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 98:12784–12789PubMedCrossRefGoogle Scholar
  110. 110.
    Wellington CL, Ellerby LM, Gutekunst CA et al (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872PubMedGoogle Scholar
  111. 111.
    Graham RK, Deng Y, Slow EJ et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191PubMedCrossRefGoogle Scholar
  112. 112.
    Smale G, Nichols NR, Brady DR et al (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133:225–230PubMedCrossRefGoogle Scholar
  113. 113.
    Ferrer I, Puig B, Krupinsk J et al (2001) Fas and Fas ligand expression in Alzheimer’s disease. Acta Neuropathol (Berl) 102:121–131Google Scholar
  114. 114.
    Martinez M, Fernandez-Vivancos E, Frank A, De la Fuente M, Hernanz A (2000) Increased cerebrospinal fluid fas (Apo-1) levels in Alzheimer’s disease: relationship with IL-6 concentrations. Brain Res 869:216–219PubMedCrossRefGoogle Scholar
  115. 115.
    de la Monte SM, Sohn YK, Ganju N, Wands JR (1998) P53-and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78:401–411PubMedGoogle Scholar
  116. 116.
    Mogi M, Harada M, Kondo T et al (1996) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220:195–198PubMedCrossRefGoogle Scholar
  117. 117.
    D’souza SD, Bonetti B, Balasingam V et al (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361–2370PubMedCrossRefGoogle Scholar
  118. 118.
    Bilinska M, Frydecka I, Podemski R, Gruszka E (2003) Fas expression on T cells and sFas in relapsing-remitting multiple sclerosis. Acta Neurol Scand 107:387–393PubMedCrossRefGoogle Scholar
  119. 119.
    Boylan MT, Crockard AD, McDonnell GV et al (2001) Serum and cerebrospinal fluid soluble Fas levels in clinical subgroups of multiple sclerosis. Immunol Lett 78:183–187PubMedCrossRefGoogle Scholar
  120. 120.
    Zipp F, Weller M, Calabresi PA et al (1998) Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Ann Neurol 43:116–120PubMedCrossRefGoogle Scholar
  121. 121.
    Mu X, He J, Anderson DW, Trojanowski JQ, Springer JE (1996) Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 40:379–386PubMedCrossRefGoogle Scholar
  122. 122.
    Su JH, Satou T, Anderson AJ, Cotman CW (1996) Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimer’s disease. Neuroreport 7:437–440PubMedCrossRefGoogle Scholar
  123. 123.
    MacGibbon GA, Lawlor PA, Sirimanne ES et al (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750:223–234PubMedCrossRefGoogle Scholar
  124. 124.
    Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18:565–571PubMedCrossRefGoogle Scholar
  125. 125.
    Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43PubMedCrossRefGoogle Scholar
  126. 126.
    Sjogren M, Andreasen N, Blennow K (2003) Advances in the detection of Alzheimer’s disease-use of cerebrospinal fluid biomarkers. Clin Chim Acta 332:1–10PubMedCrossRefGoogle Scholar
  127. 127.
    Sjogren M, Minthon L, Davidsson P et al (2000) CSF levels of tau, beta-amyloid(1–42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 107:563–579PubMedCrossRefGoogle Scholar
  128. 128.
    Kapaki E, Kilidireas K, Paraskevas GP et al (2001) Highly increased CSF tau protein and decreased beta-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease? J Neurol Neurosurg Psychiat 71:401–403PubMedCrossRefGoogle Scholar
  129. 129.
    Sjogren M, Davidsson P, Wallin A et al (2002) Decreased CSF-beta-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord 13:112–118PubMedCrossRefGoogle Scholar
  130. 130.
    Sjogren M, Gisslen M, Vanmechelen E, Blennow K (2001) Low cerebrospinal fluid beta-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci Lett 314:33–36PubMedCrossRefGoogle Scholar
  131. 131.
    Lewczuk P, Esselmann H, Otto M et al (2004) Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 25:273–281PubMedCrossRefGoogle Scholar
  132. 132.
    Kohira I, Tsuji T, Ishizu H et al (2000) Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease. Acta Neurol Scand 102:385–387PubMedCrossRefGoogle Scholar
  133. 133.
    Kropp S, Zerr I, Schulz-Schaeffer WJ et al (1999) Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease. Neurosci Lett 261:124–126PubMedCrossRefGoogle Scholar
  134. 134.
    Blennow K, Wallin A, Ekman R (1994) Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J Neural Transm Park Dis Dement Sect 8:183–191PubMedCrossRefGoogle Scholar
  135. 135.
    Finsterer J, Exner M, Rumpold H (2004) Cerebrospinal fluid neuron-specific enolase in non-selected patients. Scand J Clin Lab Invest 64:553–558PubMedCrossRefGoogle Scholar
  136. 136.
    Noppe M, Crols R, Andries D, Lowenthal A (1986) Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of non-specific or specific central nervous tissue pathology. Clin Chim Acta 155:143–150PubMedCrossRefGoogle Scholar
  137. 137.
    Herrmann M, Vos P, Wunderlich MT et al (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31:2670–2677PubMedGoogle Scholar
  138. 138.
    Ross SA, Cunningham RT, Johnston CF, Rowlands BJ (1996) Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 10:471–476PubMedCrossRefGoogle Scholar
  139. 139.
    Nylen K, Ost M, Csajbok LZ et al (2006) Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 240:85–91PubMedCrossRefGoogle Scholar
  140. 140.
    Fukuyama R, Izumoto T, Fushiki S (2001) The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol 46:35–38PubMedCrossRefGoogle Scholar
  141. 141.
    Wallin A, Blennow K, Rosengren LE (1996) Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia. Dementia 7:267–272PubMedCrossRefGoogle Scholar
  142. 142.
    Albrechtsen M, Sorensen PS, Gjerris F, Bock E (1985) High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci 70:269–274PubMedCrossRefGoogle Scholar
  143. 143.
    Malmestrom C, Haghighi S, Rosengren L et al (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61:1720–1725PubMedGoogle Scholar
  144. 144.
    Rosengren LE, Lycke J, Andersen O (1995) Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit. J Neurol Sci 133:61–65PubMedCrossRefGoogle Scholar
  145. 145.
    McShane LM, Altman DG, Sauerbrei W et al (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391PubMedCrossRefGoogle Scholar
  146. 146.
    Visser PJ, Scheltens P, Verhey FR (2005) Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J Neurol Neurosurg Psychiat 76:1348–1354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • S. Gnanapavan
    • 1
  • G. Giovannoni
    • 2
  1. 1.Department of NeuroimmunologyInstitute of NeurologyLondonUK
  2. 2.Department of NeuroscienceInstitute of Cell and Molecular Science Queen Mary University of LondonLondonUK

Personalised recommendations