Skip to main content

Incorporation of Other Biomarkers

  • Chapter
Neurodegeneration in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 1336 Accesses

Abstract

Ramòn y Cajal, considered by many to be the father of neuroscience, was the first to document in any great detail the complex structure and function of the human nervous system. In recognition of his achievements he was awarded the Nobel Prize in 1906, together with his contemporary, Camillo Golgi. Successive generations of neuroscientists added to his work, broadening our understanding of this field, but it was not until the Human Genome Project that it became possible to assimilate vast quantities of information from an entire genome or proteome. As a consequence, the number of biomolecules relevant to the study of neuronal biology and pathology has escalated. It therefore comes as no surprise to find that the literature on biomarkers is vast and encompasses a wide spectrum of disciplines from genetics to medical physics. This chapter focuses on the use of molecular biomarkers in neurodegeneration and the progress made so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(3):393–399

    Article  PubMed  Google Scholar 

  2. Carden MJ, Schlaepfer WW, Lee VM (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260:9805–9817

    PubMed  CAS  Google Scholar 

  3. Perrone Capano C, Pernas-Alonso R, di Porzio U (2001) Neurofilament homeostasis and motoneurone degeneration. Bioessays 23:24–33

    Article  PubMed  CAS  Google Scholar 

  4. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198

    Article  PubMed  CAS  Google Scholar 

  5. Carpenter S (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18:841–851

    PubMed  CAS  Google Scholar 

  6. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470

    PubMed  CAS  Google Scholar 

  7. Hirano A, Nakano I, Kurland LT et al (1984) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:471–480

    PubMed  CAS  Google Scholar 

  8. Dickson DW, Feany MB, Yen SH et al (1996) Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick’s disease, and corticobasal degeneration. J Neural Transm 47(Suppl):31–46

    CAS  Google Scholar 

  9. de la Monte SM, Wands JR (1994) Diagnostic utility of quantitating neurofilament-immunoreactive Alzheimer’s disease lesions. J Histochem Cytochem 42:1625–1634

    PubMed  Google Scholar 

  10. Arima K, Nakamura M, Sunohara N et al (1999) Immunohistochemical and ultrastructural characterization of neuritic clusters around ghost tangles in the hippocampal formation in progressive supranuclear palsy brains. Acta Neuropathol (Berl) 97:565–576

    Article  CAS  Google Scholar 

  11. Brettschneider J, Petzold A, Sussmuth SD et al (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66:852–856

    Article  PubMed  CAS  Google Scholar 

  12. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25–31

    Article  PubMed  CAS  Google Scholar 

  13. Rosengren LE, Karlsson JE, Karlsson JO et al (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67:2013–2018

    Article  PubMed  CAS  Google Scholar 

  14. Sjogren M, Blomberg M, Jonsson M et al (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66:510–516

    Article  PubMed  CAS  Google Scholar 

  15. Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123(2):308–317

    Article  PubMed  Google Scholar 

  16. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  17. Norgren N, Sundstrom P, Svenningsson A et al (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63:1586–1590

    PubMed  CAS  Google Scholar 

  18. Petzold A, Eikelenboom MJ, Keir G et al (2005) Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiat 76:206–211

    Article  PubMed  CAS  Google Scholar 

  19. Petzold A, Eikelenboom MI, Keir G et al (2006) The new global multiple sclerosis severity score (MSSS) correlates with axonal but not glial biomarkers. Mult Scler 12:325–328

    Article  PubMed  CAS  Google Scholar 

  20. Petzold A, Rejdak K, Plant GT (2004) Axonal degeneration and inflammation in acute optic neuritis. J Neurol Neurosurg Psychiat 75:1178–1180

    Article  PubMed  CAS  Google Scholar 

  21. Brettschneider J, Petzold A, Junker A, Tumani H (2006) Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 12:143–148

    Article  PubMed  CAS  Google Scholar 

  22. Griffin WS, Sheng JG, McKenzie JE et al (1998) Life-long overexpression of S100beta in Down’s syndrome: implications for Alzheimer pathogenesis. Neurobiol Aging 19:401–405

    Article  PubMed  CAS  Google Scholar 

  23. Otto M, Wiltfang J, Schutz E et al (1998) Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study. BMJ 316:577–582

    PubMed  CAS  Google Scholar 

  24. Petzold A, Eikelenboom MJ, Gveric D et al (2002) Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125:1462–1473

    Article  PubMed  CAS  Google Scholar 

  25. Foerch C, Otto B, Singer OC et al (2004) Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 35:2160–2164

    Article  PubMed  CAS  Google Scholar 

  26. Infante JR, Martinez A, Ochoa J et al (2003) Cerebrospinal fluid S-100 protein levels in neurological pathologies. J Physiol Biochem 59:255–261

    Article  PubMed  CAS  Google Scholar 

  27. Petzold A, Jenkins R, Watt HC et al (2003) Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett 336:167–170

    Article  PubMed  CAS  Google Scholar 

  28. Peskind ER, Griffin WS, Akama KT et al (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39:409–413

    Article  PubMed  CAS  Google Scholar 

  29. Green AJ, Harvey RJ, Thompson EJ, Rossor MN (1997) Increased S100beta in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett 235:5–8

    Article  PubMed  CAS  Google Scholar 

  30. Otto M, Bahn E, Wiltfang J et al (1998) Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis. Neurosci Lett 240:171–173

    Article  PubMed  CAS  Google Scholar 

  31. Sussmuth SD, Tumani H, Ecker D, Ludolph AC (2003) Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett 353:57–60

    Article  PubMed  CAS  Google Scholar 

  32. Michetti F, Massaro A, Murazio M (1979) The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett 11:171–175

    Article  PubMed  CAS  Google Scholar 

  33. Massaro AR, Michetti F, Laudisio A, Bergonzi P (1985) Myelin basic protein and S-100 antigen in cerebrospinal fluid of patients with multiple sclerosis in the acute phase. Ital J Neurol Sci 6:53–56

    Article  PubMed  CAS  Google Scholar 

  34. Missler U, Wandinger KP, Wiesmann M et al (1997) Acute exacerbation of multiple sclerosis increases plasma levels of S-100 protein. Acta Neurol Scand 96:142–144

    Article  PubMed  CAS  Google Scholar 

  35. Lim ET, Petzold A, Leary SM et al (2004) Serum S100B in primary progressive multiple sclerosis patients treated with interferon-beta-1a. J Negat Results Biomed 3:4

    Article  PubMed  Google Scholar 

  36. Buttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W (1997) S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 28:1961–1965

    PubMed  CAS  Google Scholar 

  37. Aurell A, Rosengren LE, Karlsson B et al (1991) Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 22:1254–1258

    PubMed  CAS  Google Scholar 

  38. Missler U, Wiesmann M, Friedrich C, Kaps M (1997) S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 28:1956–1960

    PubMed  CAS  Google Scholar 

  39. Blennow K, Vanmechelen E (2003) CSF markers for pathogenic processes in Alzheimer’s disease: diagnostic implications and use in clinical neurochemistry. Brain Res Bull 61:235–242

    Article  PubMed  CAS  Google Scholar 

  40. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  PubMed  CAS  Google Scholar 

  41. Hampel H, Goernitz A, Buerger K (2003) Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and Abeta(1-42) proteins to phosphorylated tau protein. Brain Res Bull 61:243–253

    Article  PubMed  CAS  Google Scholar 

  42. Hampel H, Mitchell A, Blennow K et al (2004) Core biological marker candidates of Alzheimer’s disease: perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm 111:247–272

    Article  PubMed  CAS  Google Scholar 

  43. Morikawa Y, Arai H, Matsushita S et al (1999) Cerebrospinal fluid tau protein levels in demented and nondemented alcoholics. Alcohol Clin Exp Res 23:575–577

    PubMed  CAS  Google Scholar 

  44. Andreasen N, Minthon L, Clarberg A et al (1999) Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology 53:1488–1494

    PubMed  CAS  Google Scholar 

  45. Molina JA, Benito-León J, Jiménez-Jiménez FJ et al (1997) Tau protein concentrations in cerebrospinal fluid of non-demented Parkinson’s disease patients. Neurosci Lett 238:139–141

    Article  PubMed  CAS  Google Scholar 

  46. Hulstaert F, Blennow K, Ivanoiu A et al (1999) Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 52:1555–1562

    PubMed  CAS  Google Scholar 

  47. Paraskevas GP, Kapaki E, Liappas I et al (2005) The diagnostic value of cerebrospinal fluid tau protein in dementing and nondementing neuropsychiatric disorders. J Geriatr Psychiatry Neurol 18:163–173

    Article  PubMed  Google Scholar 

  48. Andreasen N, Minthon L, Davidsson P et al (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58:373–379

    Article  PubMed  CAS  Google Scholar 

  49. Otto M, Wiltfang J, Tumani H et al (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225:210–212

    Article  PubMed  CAS  Google Scholar 

  50. Hesse C, Rosengren L, Vanmechelen E et al (2000) Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. J Alzheimers Dis 2:199–206

    PubMed  CAS  Google Scholar 

  51. Brettschneider J, Maier M, Arda S et al (2005) Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult Scler 11:261–265

    Article  PubMed  CAS  Google Scholar 

  52. Bulut M, Koksal O, Dogan S et al (2006) Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther 23:12–22

    PubMed  CAS  Google Scholar 

  53. Arai H, Nakagawa T, Kosaka Y et al (1997) Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients. Alzheim Res 3:211–213

    Google Scholar 

  54. Hansson O, Zetterberg H, Buchhave P et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234

    Article  PubMed  CAS  Google Scholar 

  55. Maruyama M, Arai H, Sugita M et al (2001) Cerebrospinal fluid amyloid beta(1-42) levels in the mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol 172:433–436

    Article  PubMed  CAS  Google Scholar 

  56. Hock C, Golombowski S, Naser W, Muller-Spahn F (1995) Increased levels of tau protein in cerebrospinal fluid of patients with Alzheimer’s disease: correlation with degree of cognitive impairment. Ann Neurol 37:414–415

    Article  PubMed  CAS  Google Scholar 

  57. Kanai M, Matsubara E, Isoe K et al (1998) Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: a study in Japan. Ann Neurol 44:17–26

    Article  PubMed  CAS  Google Scholar 

  58. Andreasen N, Vanmechelen E, Van deVoorde A et al (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64:298–305

    PubMed  CAS  Google Scholar 

  59. Arai H, Terajima M, Miura M et al (1995) Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol 38:649–652

    Article  PubMed  CAS  Google Scholar 

  60. Vanmechelen E, Vanderstichele H, Davidsson P et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52

    Article  PubMed  CAS  Google Scholar 

  61. Ishiguro K, Ohno H, Arai H et al (1999) Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci Lett 270:91–94

    Article  PubMed  CAS  Google Scholar 

  62. Kohnken R, Buerger K, Zinkowski R et al (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 287:187–190

    Article  PubMed  CAS  Google Scholar 

  63. Hu YY, He SS, Wang X et al (2002) Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzymesubstrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160:1269–1278

    PubMed  CAS  Google Scholar 

  64. Buerger K, Zinkowski R, Teipel SJ et al (2003) Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231. Am J Psychiatry 160:376–379

    Article  PubMed  Google Scholar 

  65. Buerger K, Zinkowski R, Teipel SJ et al (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59:1267–1272

    Article  PubMed  Google Scholar 

  66. Buerger K, Teipel SJ, Zinkowski R et al (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59:627–629

    PubMed  CAS  Google Scholar 

  67. Sjogren M, Davidsson P, Tullberg M et al (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiat 70:624–630

    Article  PubMed  CAS  Google Scholar 

  68. Hesse C, Rosengren L, Andreasen N et al (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297:187–190

    Article  PubMed  CAS  Google Scholar 

  69. Arai H, Ishiguro K, Ohno H et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol 166:201–203

    Article  PubMed  CAS  Google Scholar 

  70. de Leon MJ, DeSanti S, Zinkowski R et al (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27:394–401

    Article  PubMed  CAS  Google Scholar 

  71. Burkhard PR, Sanchez JC, Landis T, Hochstrasser DF (2001) CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 56:1528–1533

    PubMed  CAS  Google Scholar 

  72. Tschampa HJ, Neumann M, Zerr I et al (2001) Patients with Alzheimer’s disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 71:33–39

    Article  PubMed  CAS  Google Scholar 

  73. Collins S, Boyd A, Fletcher A et al (2000) Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. J Clin Neurosci 7:203–208

    Article  PubMed  CAS  Google Scholar 

  74. Van EB, Quoilin S, Boons J et al (2003) A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 74:1210–1214

    Article  Google Scholar 

  75. Hsich G, Kenney K, Gibbs CJ et al (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930

    Article  PubMed  CAS  Google Scholar 

  76. WHO (1998) Human transmissible spongiform encephalopathies. Weekly Epidemiol Rec 73:361–372

    Google Scholar 

  77. Zerr I, Pocchiari M, Collins S et al (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 55:811–815

    PubMed  CAS  Google Scholar 

  78. Green AJ, Thompson EJ, Stewart GE et al (2001) Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiat 70:744–748

    Article  PubMed  CAS  Google Scholar 

  79. Zeidler M, Sellar RJ, Collie DA et al (2000) The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 355:1412–1418

    Article  PubMed  CAS  Google Scholar 

  80. Beal MF, Ferrante RJ, Browne SE et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    Article  PubMed  CAS  Google Scholar 

  81. Ferrante RJ, Shinobu LA, Schulz JB et al (1997) Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42:326–334

    Article  PubMed  CAS  Google Scholar 

  82. Tohgi H, Abe T, Yamazaki K et al (1999) Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 46:129–131

    Article  PubMed  CAS  Google Scholar 

  83. Tohgi H, Abe T, Yamazaki K et al (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci Lett 269:52–54

    Article  PubMed  CAS  Google Scholar 

  84. Ryberg H, Soderling AS, Davidsson P et al (2004) Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer’s disease. Neurochem Int 45:57–62

    Article  PubMed  CAS  Google Scholar 

  85. Carney JM, Starke-Reed PE, Oliver CNet al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636

    Article  PubMed  CAS  Google Scholar 

  86. Smith CD, Carney JM, Tatsumo T et al (1992) Protein oxidation in aging brain. Ann NY Acad Sci 663:110–119

    Article  PubMed  CAS  Google Scholar 

  87. Aksenova MV, Aksenov MY, Payne RM et al (1999) Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord 10:158–165

    Article  PubMed  CAS  Google Scholar 

  88. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  PubMed  CAS  Google Scholar 

  89. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38:691–695

    Article  PubMed  CAS  Google Scholar 

  90. Bowling AC, Schulz JB, Brown RH, Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61:2322–2325

    Article  PubMed  CAS  Google Scholar 

  91. Ferrante RJ, Browne SE, Shinobu LA et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    Article  PubMed  CAS  Google Scholar 

  92. Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  PubMed  CAS  Google Scholar 

  93. Alam ZI, Daniel SE, Lees AJ et al (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    Article  PubMed  CAS  Google Scholar 

  94. Przedborski S (2004) Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10:1–7

    Article  PubMed  Google Scholar 

  95. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiat 76:1046–1057

    Article  PubMed  CAS  Google Scholar 

  96. Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70

    Article  PubMed  CAS  Google Scholar 

  97. Eckert A, Marques CA, Keil U et al (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609

    Article  PubMed  CAS  Google Scholar 

  98. Dragunow M, Faull RL, Lawlor P et al (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057

    PubMed  CAS  Google Scholar 

  99. Puig B, Ferrer I(2001) Cell death signaling in the cerebellum in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 102:207–215

    CAS  Google Scholar 

  100. Probst-Cousin S, Rickert CH, Schmid KW, Gullotta F (1998) Cell death mechanisms in multiple system atrophy. J Neuropathol Exp Neurol 57:814–821

    Article  PubMed  CAS  Google Scholar 

  101. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58:459–471

    PubMed  CAS  Google Scholar 

  102. Ilzecka J, Stelmasiak Z, Dobosz B (2001) Interleukin-1beta converting enzyme/caspase-1 (ICE/caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand 103:255–258

    Article  PubMed  CAS  Google Scholar 

  103. Gervais FG, Xu D, Robertson GS et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406

    Article  PubMed  CAS  Google Scholar 

  104. Takuma H, Tomiyama T, Kuida K, Mori H (2004) Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol 63:255–261

    PubMed  CAS  Google Scholar 

  105. Masliah E, Mallory M, Alford M et al (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropathol Exp Neurol 57:1041–1052

    PubMed  CAS  Google Scholar 

  106. Gamblin TC, Chen F, Zambrano A et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037

    Article  PubMed  CAS  Google Scholar 

  107. Chung CW, Song YH, Kim IK et al (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 8:162–172

    Article  PubMed  CAS  Google Scholar 

  108. Rissman RA, Poon WW, Blurton-Jones M et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    Article  PubMed  CAS  Google Scholar 

  109. Kim YJ, Yi Y, Sapp E et al (2001) Caspase 3-cleaved N-terminal fragments of wildtype and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 98:12784–12789

    Article  PubMed  CAS  Google Scholar 

  110. Wellington CL, Ellerby LM, Gutekunst CA et al (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872

    PubMed  CAS  Google Scholar 

  111. Graham RK, Deng Y, Slow EJ et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191

    Article  PubMed  CAS  Google Scholar 

  112. Smale G, Nichols NR, Brady DR et al (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133:225–230

    Article  PubMed  CAS  Google Scholar 

  113. Ferrer I, Puig B, Krupinsk J et al (2001) Fas and Fas ligand expression in Alzheimer’s disease. Acta Neuropathol (Berl) 102:121–131

    CAS  Google Scholar 

  114. Martinez M, Fernandez-Vivancos E, Frank A, De la Fuente M, Hernanz A (2000) Increased cerebrospinal fluid fas (Apo-1) levels in Alzheimer’s disease: relationship with IL-6 concentrations. Brain Res 869:216–219

    Article  PubMed  CAS  Google Scholar 

  115. de la Monte SM, Sohn YK, Ganju N, Wands JR (1998) P53-and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78:401–411

    PubMed  Google Scholar 

  116. Mogi M, Harada M, Kondo T et al (1996) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220:195–198

    Article  PubMed  CAS  Google Scholar 

  117. D’souza SD, Bonetti B, Balasingam V et al (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361–2370

    Article  PubMed  CAS  Google Scholar 

  118. Bilinska M, Frydecka I, Podemski R, Gruszka E (2003) Fas expression on T cells and sFas in relapsing-remitting multiple sclerosis. Acta Neurol Scand 107:387–393

    Article  PubMed  CAS  Google Scholar 

  119. Boylan MT, Crockard AD, McDonnell GV et al (2001) Serum and cerebrospinal fluid soluble Fas levels in clinical subgroups of multiple sclerosis. Immunol Lett 78:183–187

    Article  PubMed  CAS  Google Scholar 

  120. Zipp F, Weller M, Calabresi PA et al (1998) Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Ann Neurol 43:116–120

    Article  PubMed  CAS  Google Scholar 

  121. Mu X, He J, Anderson DW, Trojanowski JQ, Springer JE (1996) Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 40:379–386

    Article  PubMed  CAS  Google Scholar 

  122. Su JH, Satou T, Anderson AJ, Cotman CW (1996) Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimer’s disease. Neuroreport 7:437–440

    Article  PubMed  CAS  Google Scholar 

  123. MacGibbon GA, Lawlor PA, Sirimanne ES et al (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750:223–234

    Article  PubMed  CAS  Google Scholar 

  124. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18:565–571

    Article  PubMed  CAS  Google Scholar 

  125. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43

    Article  PubMed  CAS  Google Scholar 

  126. Sjogren M, Andreasen N, Blennow K (2003) Advances in the detection of Alzheimer’s disease-use of cerebrospinal fluid biomarkers. Clin Chim Acta 332:1–10

    Article  PubMed  CAS  Google Scholar 

  127. Sjogren M, Minthon L, Davidsson P et al (2000) CSF levels of tau, beta-amyloid(1–42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 107:563–579

    Article  PubMed  CAS  Google Scholar 

  128. Kapaki E, Kilidireas K, Paraskevas GP et al (2001) Highly increased CSF tau protein and decreased beta-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease? J Neurol Neurosurg Psychiat 71:401–403

    Article  PubMed  CAS  Google Scholar 

  129. Sjogren M, Davidsson P, Wallin A et al (2002) Decreased CSF-beta-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord 13:112–118

    Article  PubMed  Google Scholar 

  130. Sjogren M, Gisslen M, Vanmechelen E, Blennow K (2001) Low cerebrospinal fluid beta-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci Lett 314:33–36

    Article  PubMed  CAS  Google Scholar 

  131. Lewczuk P, Esselmann H, Otto M et al (2004) Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 25:273–281

    Article  PubMed  CAS  Google Scholar 

  132. Kohira I, Tsuji T, Ishizu H et al (2000) Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease. Acta Neurol Scand 102:385–387

    Article  PubMed  CAS  Google Scholar 

  133. Kropp S, Zerr I, Schulz-Schaeffer WJ et al (1999) Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease. Neurosci Lett 261:124–126

    Article  PubMed  CAS  Google Scholar 

  134. Blennow K, Wallin A, Ekman R (1994) Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J Neural Transm Park Dis Dement Sect 8:183–191

    Article  PubMed  CAS  Google Scholar 

  135. Finsterer J, Exner M, Rumpold H (2004) Cerebrospinal fluid neuron-specific enolase in non-selected patients. Scand J Clin Lab Invest 64:553–558

    Article  PubMed  CAS  Google Scholar 

  136. Noppe M, Crols R, Andries D, Lowenthal A (1986) Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of non-specific or specific central nervous tissue pathology. Clin Chim Acta 155:143–150

    Article  PubMed  CAS  Google Scholar 

  137. Herrmann M, Vos P, Wunderlich MT et al (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31:2670–2677

    PubMed  CAS  Google Scholar 

  138. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ (1996) Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 10:471–476

    Article  PubMed  CAS  Google Scholar 

  139. Nylen K, Ost M, Csajbok LZ et al (2006) Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 240:85–91

    Article  PubMed  CAS  Google Scholar 

  140. Fukuyama R, Izumoto T, Fushiki S (2001) The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol 46:35–38

    Article  PubMed  CAS  Google Scholar 

  141. Wallin A, Blennow K, Rosengren LE (1996) Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia. Dementia 7:267–272

    Article  PubMed  CAS  Google Scholar 

  142. Albrechtsen M, Sorensen PS, Gjerris F, Bock E (1985) High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci 70:269–274

    Article  PubMed  CAS  Google Scholar 

  143. Malmestrom C, Haghighi S, Rosengren L et al (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61:1720–1725

    PubMed  CAS  Google Scholar 

  144. Rosengren LE, Lycke J, Andersen O (1995) Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit. J Neurol Sci 133:61–65

    Article  PubMed  CAS  Google Scholar 

  145. McShane LM, Altman DG, Sauerbrei W et al (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391

    Article  PubMed  CAS  Google Scholar 

  146. Visser PJ, Scheltens P, Verhey FR (2005) Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J Neurol Neurosurg Psychiat 76:1348–1354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Gnanapavan, S., Giovannoni, G. (2007). Incorporation of Other Biomarkers. In: Filippi, M., Rovaris, M., Comi, G. (eds) Neurodegeneration in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-0391-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0391-0_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0390-3

  • Online ISBN: 978-88-470-0391-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics