Advertisement

Neuropathological Advances in Multiple Sclerosis

  • E. Capello
  • A. Uccelli
  • M. Pizzorno
  • G.L. Mancardi
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

The neuropathology of multiple sclerosis (MS) has been thoroughly and carefully described since the pioneer studies on the disease [1]. It was already clear in the last years of the 1800s that MS is an inflammatory disease of the central nervous system (CNS) with scattered areas of demyelination and relative sparing of axons. The astroglial and microglial reactions, the possible loss of neurons, the axonal injury, and the capacity of the CNS to partly remyelinate the damaged areas were all widely known and described.

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Multiple Sclerosis Lesion Axonal Damage Acute Disseminate Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lassmann H (2005) Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 15:217–22PubMedCrossRefGoogle Scholar
  2. 2.
    Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53CrossRefPubMedGoogle Scholar
  3. 3.
    Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172PubMedCrossRefGoogle Scholar
  4. 4.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  5. 5.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  6. 6.
    Bitsch A, Schuchardt J, Bunkowski S et al (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123:1174–1183PubMedCrossRefGoogle Scholar
  7. 7.
    Mancardi G, Hart B, Roccatagliata L et al (2001) Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci 184:41–49PubMedCrossRefGoogle Scholar
  8. 8.
    Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317PubMedCrossRefGoogle Scholar
  9. 9.
    Babbe H, Roers A, Waisman A et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404PubMedCrossRefGoogle Scholar
  10. 10.
    Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28:383–395PubMedCrossRefGoogle Scholar
  11. 11.
    Nobbio L, Gherardi G, Vigo T et al (2006) Axonal damage and demyelination in longterm dorsal root ganglia cultures from a rat model of Charcot-Marie-Tooth type 1A disease. Eur J Neurosci 23:1445–1452PubMedCrossRefGoogle Scholar
  12. 12.
    Coman I, Aigrot MS, Seilhean et al (2006) Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129:3186–3195PubMedCrossRefGoogle Scholar
  13. 13.
    Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175PubMedCrossRefGoogle Scholar
  14. 14.
    Berger T, Rubner P, Schautzer F et al (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145PubMedCrossRefGoogle Scholar
  15. 15.
    Lucchinetti C, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedCrossRefGoogle Scholar
  16. 16.
    Baranzini SE, Jeong MC, Butunoi C et al (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144PubMedGoogle Scholar
  17. 17.
    Colombo M, Dono M, Gazzola P et al (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164:2782–2789PubMedGoogle Scholar
  18. 18.
    Mancardi G, Hart BA, Capello E et al (2000) Restricted immune responses lead to CNS demyelination and axonal damage. J Neuroimmunol 107:178–183PubMedCrossRefGoogle Scholar
  19. 19.
    Colombo M, Dono M, Gazzola P et al (2003) Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur J Immunol 33:3433–3438PubMedCrossRefGoogle Scholar
  20. 20.
    Corcione A, Casazza S, Ferretti E et al (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA 101:11064–11069PubMedCrossRefGoogle Scholar
  21. 21.
    Serafini B, Rosicarelli B, Magliozzi R et al (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65:124–141PubMedCrossRefGoogle Scholar
  22. 22.
    Bo L, Vedeler CA, Nyland HI et al (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732PubMedGoogle Scholar
  23. 23.
    Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107PubMedGoogle Scholar
  24. 24.
    Wegner C, Esiri MM, Chance SA et al (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967PubMedCrossRefGoogle Scholar
  25. 25.
    Kutzelnigg A, Lassmann H (2006) Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J Neurol Sci 245:123–126PubMedCrossRefGoogle Scholar
  26. 26.
    De Stefano N, Narayanan S, Francis SJ et al (2002) Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol 59:1565–1571PubMedCrossRefGoogle Scholar
  27. 27.
    Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933PubMedGoogle Scholar
  28. 28.
    Pelletier D, Nelson SJ, Oh J et al (2003) MRI lesion volume heterogeneity in primary progressive MS in relation with axonal damage and brain atrophy. J Neurol Neurosurg Psychiat 74:950–952PubMedCrossRefGoogle Scholar
  29. 29.
    Rocca MA, Iannucci G, Rovaris M et al (2003) Occult tissue damage in patients with primary progressive multiple sclerosis is independent of T2-visible lesions: a diffusion tensor MR study. J Neurol 250:456–460PubMedCrossRefGoogle Scholar
  30. 30.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedCrossRefGoogle Scholar
  31. 31.
    Hochmeister S, Grundtner R, Bauer J et al (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865PubMedGoogle Scholar
  32. 32.
    Matute C, Perez-Cerda F (2005) Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci 28:173–175PubMedCrossRefGoogle Scholar
  33. 33.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468PubMedCrossRefGoogle Scholar
  34. 34.
    Deng X, Sriram S (2005) Role of microglia in multiple sclerosis. Curr Neurol Neurosci Rep 5:239–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • E. Capello
    • 1
  • A. Uccelli
    • 1
  • M. Pizzorno
    • 1
  • G.L. Mancardi
    • 1
  1. 1.Department of NeuroscienceOphtalmology and Genetics University of GenoaItaly

Personalised recommendations