Mitochondria in Cell Life and Death

  • Diego De Stefani
  • Paolo Pinton
  • Rosario Rizzuto


The mitochondrion represents a unique organelle within the complex endomembrane systems that characterize any eukaryotic cell. It is realistic to state that complex life on earth has been made possible through the “acquisition” of mitochondria which provide an adequate supply of substrates for energy-expensive tasks. Higher multicellular organisms have indeed high-energy requirements necessary to carry out complex functions, such as muscle contraction, hormones and neurotransmitters synthesis and secretion, in addition to basal cellular metabolism (biomolecules synthesis and transformation, maintenance of ionic gradients across membrane, cell division). Mitochondria can fulfill this huge energy demand thanks to their extraordinary biosynthetic capacities: every day, mitochondria of a single human being can recycle up to 50 Kg of ATP. To further underline the relevance of these subcellular structures, one can also consider how these organelles have affected the physiology of the whole organism: lungs, heart, and circulatory system have evolved essentially to provide molecular oxygen to mitochondria, which consume about 98% of the total O2 we breathe. However, beyond the pivotal role they play in ATP production, a whole new mitochondrial biology has emerged in the last few decades: mitochondria have been shown to participate in many other aspects of cell physiology such as amino-acid synthesis, iron-sulphur clusters assembly, lipid metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, and cell death regulation.


Mitochondrial Biogenesis Mitochondrial Fusion Adenine Nucleotide Translocase Mitochondrial Motility Autosomal Dominant Optic Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: From endosymbionts to organelles. Science 304:253PubMedCrossRefGoogle Scholar
  2. 2.
    Mokranjac D, Neupert W (2005) Protein import into mitochondria. Biochem Soc Trans 33:1019PubMedCrossRefGoogle Scholar
  3. 3.
    Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542PubMedCrossRefGoogle Scholar
  4. 4.
    Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53:S96PubMedCrossRefGoogle Scholar
  5. 5.
    Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829PubMedCrossRefGoogle Scholar
  6. 6.
    Liang H, Ward WF (2006) PGC-1alpha: A key regulator of energy metabolism. Adv Physiol Educ 30:145PubMedCrossRefGoogle Scholar
  7. 7.
    Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multisystem energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101PubMedCrossRefGoogle Scholar
  8. 8.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361PubMedCrossRefGoogle Scholar
  9. 9.
    Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349PubMedCrossRefGoogle Scholar
  10. 10.
    Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator lalpha expression in muscle. Proc Natl Acad Sci U S A 100:7111PubMedCrossRefGoogle Scholar
  11. 11.
    Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222PubMedCrossRefGoogle Scholar
  12. 12.
    Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298PubMedGoogle Scholar
  13. 13.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049PubMedGoogle Scholar
  14. 14.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483PubMedCrossRefGoogle Scholar
  15. 15.
    Kang SW, Chae HZ, Seo MS et al (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273:6297PubMedCrossRefGoogle Scholar
  16. 16.
    Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811PubMedCrossRefGoogle Scholar
  17. 17.
    St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397PubMedCrossRefGoogle Scholar
  18. 18.
    Pelicci G, Lanfrancone L, Grignani F et al (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93PubMedCrossRefGoogle Scholar
  19. 19.
    Pinton P, Rimessi A, Marchi S et al (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659PubMedCrossRefGoogle Scholar
  20. 20.
    Giorgio M, Migliaccio E, Orsini F et al (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221PubMedCrossRefGoogle Scholar
  21. 21.
    Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202PubMedCrossRefGoogle Scholar
  22. 22.
    Frossi B, Tell G, Spessotto P et al (2002) H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J Cell Physiol 193:180PubMedCrossRefGoogle Scholar
  23. 23.
    Majumder PK, Mishra NC, Sun X et al (2001) Targeting of protein kinase C delta to mitochondria in the oxidative stress response. Cell Growth Differ 12:465PubMedGoogle Scholar
  24. 24.
    Anesti V, Scorrano L (2006) The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 1757:692PubMedCrossRefGoogle Scholar
  25. 25.
    Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545PubMedCrossRefGoogle Scholar
  26. 26.
    Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: A homeostatic circuit. J Cell Biol 167:661PubMedCrossRefGoogle Scholar
  27. 27.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79PubMedCrossRefGoogle Scholar
  28. 28.
    Chan DC (2006) Mitochondria: Dynamic organelles in disease, aging, and development. Cell 125:1241PubMedCrossRefGoogle Scholar
  29. 29.
    Santel A (2006) Get the balance right: Mitofusins roles in health and disease. Biochim Biophys Acta 1763:490PubMedCrossRefGoogle Scholar
  30. 30.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239PubMedGoogle Scholar
  31. 31.
    Garrido C, Galluzzi L, Brunet M et al (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423PubMedCrossRefGoogle Scholar
  32. 32.
    Hill MM, Adrain C, Martin SJ (2003) Portrait of a killer: The mitochondrial apoptosome emerges from the shadows. Mol Interv 3:19PubMedCrossRefGoogle Scholar
  33. 33.
    Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131PubMedCrossRefGoogle Scholar
  34. 34.
    Danial NN, Korsmeyer SJ (2004) Cell death: Critical control points. Cell 116:205PubMedCrossRefGoogle Scholar
  35. 35.
    Cipolat S, Martinsde BO, Dal ZB, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927PubMedCrossRefGoogle Scholar
  36. 36.
    Frezza C, Cipolat S, Martins de BO et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177PubMedCrossRefGoogle Scholar
  37. 37.
    Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657PubMedCrossRefGoogle Scholar
  38. 38.
    Szabadkai G, Simoni AM, Chami M et al (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59PubMedCrossRefGoogle Scholar
  39. 39.
    Bernardi P, Krauskopf A, Basso E et al (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077PubMedCrossRefGoogle Scholar
  40. 40.
    Basso E, Fante L, Fowlkes J et al (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558PubMedCrossRefGoogle Scholar
  41. 41.
    Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652PubMedCrossRefGoogle Scholar
  42. 42.
    Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Diego De Stefani
    • 1
  • Paolo Pinton
    • 1
  • Rosario Rizzuto
    • 1
  1. 1.Department of Experimental and Diagnostic MedicineUniversity of FerraraFerraraItaly

Personalised recommendations