Mitochondria are small organelle found in almost every cell of an organism (Fig. 1). They are the size of bacteria and form a dynamic network that is constantly changing. A typical eukaryotic cell contains about 2,000 mitochondria, which occupy roughly one fifth of its total volume [1]. Mitochondria {fg115-01} are considered to be the power generators of the cell, converting oxygen and nutrients into adenosine triphosphate (ATP), through a process of oxidative phosphorylation. Although mitochondria are involved in various other important cellular processes such as the beta-oxidation of fatty acids and the biosynthesis of pyrimidines, amino acids, nucleotides, phospholipids, and heme, ATP synthesis is likely to be the most important function of these organelles. Without mitochondria, higher animals would likely not exist because their cells would not be able to obtain enough energy. In fact, mitochondria enable cells to produce 15 times more ATP than they could otherwise. Mitochondrial energy production is a foundation for health and well being. It is necessary for physical strength, stamina, and consciousness [1]. Even subtle insufficiency in mitochondrial function can cause weakness, fatigue, and cognitive difficulties [2]. Furthermore, chemicals which strongly interfere with mitochondrial function are known to be potent poisons.


Lactic Acidosis Dark Side Mitochondrial Disorder Mitochondrial Myopathy Progressive External Ophthalmoplegia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: More than just a powerhouse. Curr Biol 16:R551–R560PubMedCrossRefGoogle Scholar
  2. 2.
    Graff C, Bui TH, Larsson NG (2002) Mitochondrial diseases. Best Pract Res Clin Obstet Gynaecol 16:715–728PubMedCrossRefGoogle Scholar
  3. 3.
    Sogin M (1997) History assignment: When was the mitochondrion founded? Curr Opin Genet Dev 7:792–799PubMedCrossRefGoogle Scholar
  4. 4.
    Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: A genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177; discussion 177-169PubMedCrossRefGoogle Scholar
  5. 5.
    Mannella CA (2000) Introduction: Our changing views of mitochondria. J Bioenerg Biomembr 32:1–4PubMedCrossRefGoogle Scholar
  6. 6.
    Murphy MP, Brand MD (1988) Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur J Biochem 173:637–644PubMedCrossRefGoogle Scholar
  7. 7.
    Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705PubMedCrossRefGoogle Scholar
  8. 8.
    Stepien G, Torroni A, Chung AB et al (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597PubMedGoogle Scholar
  9. 9.
    Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  10. 10.
    Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders-Past, present and future. Biochim Biophys Acta 1659:115–120PubMedCrossRefGoogle Scholar
  11. 11.
    Luft R, Ikkos D, Palmieri G et al (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: A correlated clinical, biochemical, and morphological study. J Clin Invest 41:1776–1804PubMedCrossRefGoogle Scholar
  12. 12.
    Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedCrossRefGoogle Scholar
  13. 13.
    Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467PubMedCrossRefGoogle Scholar
  14. 14.
    Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778PubMedCrossRefGoogle Scholar
  15. 15.
    Hanna MG, Nelson IP, Morgan-Hughes JA, Harding AE (1995) Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A->G (MERRF) mutation: Relationship to proportion of mutant mitochondrial DNA. J Neurol Sci 130:154–160PubMedCrossRefGoogle Scholar
  16. 16.
    Chomyn A, Martinuzzi A, Yoneda M et al (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA 89:4221–4225PubMedCrossRefGoogle Scholar
  17. 17.
    Bourgeron T, Chretien D, Rotig A et al (1993) Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J Biol Chem 268:19369–19376PubMedGoogle Scholar
  18. 18.
    DiMauro S, Bonilla E, Zeviani M et al (1985) Mitochondrial myopathies. Ann Neurol 17:521–538CrossRefGoogle Scholar
  19. 19.
    Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127:2153–2172PubMedCrossRefGoogle Scholar
  20. 20.
    Scaglia F, Northrop JL (2006) The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: A review of treatment options. CNS Drugs 20:443–464PubMedCrossRefGoogle Scholar
  21. 21.
    Bindoff LA, Desnuelle C, Birch-Machin MA et al (1991) Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): A clinical, biochemical and molecular study. J Neurol Sci 102:17–24PubMedCrossRefGoogle Scholar
  22. 22.
    Ballana E, Morales E, Rabionet R et al (2006) Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment. Biochem Biophys Res Commun 341:950–957PubMedCrossRefGoogle Scholar
  23. 23.
    Servidei S (2004) Mitochondrial encephalomyopathies: Gene mutation. Neuromuscul Disord 14:107–116PubMedCrossRefGoogle Scholar
  24. 24.
    DiMauro S, Hirano M (2005) Mitochondrial encephalomyopathies: An update. Neuromuscul Disord 15:276–286CrossRefGoogle Scholar
  25. 25.
    Zeviani M, Gellera C, Pannacci M et al (1990) Tissue distribution and transmission of mitochondrial DNA deletions in mitochondrial myopathies. Ann Neurol 28:94–97PubMedCrossRefGoogle Scholar
  26. 26.
    Harding AE, Hammans SR (1992) Deletions of the mitochondrial genome. J Inherit Metab Dis 15:480–486PubMedCrossRefGoogle Scholar
  27. 27.
    Lenaz G, Fato R, Genova ML et al (2006) Mitochondrial Complex I: Structural and functional aspects. Biochim Biophys Acta 1757:1406–1420PubMedCrossRefGoogle Scholar
  28. 28.
    Lenaz G, Baracca A, Fato R et al (2006) Mitochondrial Complex I: Structure, function, and implications in neurodegeneration. Ital J Biochem 55:232–253PubMedGoogle Scholar
  29. 29.
    Morrish DW, Linetsky E, Bhardwaj D et al (1996) Identification by subtractive hybridization of a spectrum of novel and unexpected genes associated with in vitro differentiation of human cytotrophoblast cells. Placenta 17:431–441PubMedCrossRefGoogle Scholar
  30. 30.
    Favier J, Briere JJ, Strompf L et al (2005) Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm Res 63:171–179PubMedCrossRefGoogle Scholar
  31. 31.
    Haut S, Brivet M, Touati G et al (2003) A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 113:118–122PubMedGoogle Scholar
  32. 32.
    Tiranti V, Jaksch M, Hofmann S et al (1999) Loss-of-function mutations of SURF1 are specifically associated with Leigh syndrome with cytochrome c oxidase deficiency. Ann Neurol 46:161–166PubMedCrossRefGoogle Scholar
  33. 33.
    Papadopoulou LC, Sue CM, Davidson MM et al (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337PubMedCrossRefGoogle Scholar
  34. 34.
    Valnot I, Osmond S, Gigarel N et al (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109PubMedGoogle Scholar
  35. 35.
    Valnot I, von Kleist-Retzow JC, Barrientos A et al (2000) A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum Mol Genet 9:1245–1249PubMedCrossRefGoogle Scholar
  36. 36.
    Visapaa I, Fellman V, Vesa J et al (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876PubMedCrossRefGoogle Scholar
  37. 37.
    De Meirleir L, Seneca S, Lissens W et al (2004) Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J Med Genet 41:120–124CrossRefGoogle Scholar
  38. 38.
    Suomalainen A, Kaukonen J (2001) Diseases caused by nuclear genes affecting mtDNA stability. Am J Med Genet 106:53–61PubMedCrossRefGoogle Scholar
  39. 39.
    Zeviani M, Servidei S, Gellera C et al (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339:309–311PubMedCrossRefGoogle Scholar
  40. 40.
    Bohlega S, Tanji K, Santorelli FM et al (1996) Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46:1329–1334PubMedGoogle Scholar
  41. 41.
    Hirano M, Cleary JM, Stewart AM et al (1994) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 44:721–727PubMedGoogle Scholar
  42. 42.
    Valianpour F, Wanders RJ, Overmars H et al (2002) Cardiolipin deficiency in X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060): A study in cultured skin fibroblasts. J Pediatr 141:729–733PubMedCrossRefGoogle Scholar
  43. 43.
    Di Donato S (2000) Disorders related to mitochondrial membranes: Pathology of the respiratory chain and neurodegeneration. J Inherit Metab Dis 23:247–263PubMedCrossRefGoogle Scholar
  44. 44.
    Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214CrossRefGoogle Scholar
  45. 45.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  46. 46.
    Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29:89–95PubMedCrossRefGoogle Scholar
  47. 47.
    Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104PubMedCrossRefGoogle Scholar
  48. 48.
    Ibanez V, Pietrini P, Alexander et al (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50:1585–1593PubMedGoogle Scholar
  49. 49.
    Onyango I, Khan S, Miller B et al (2006) Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis 9:183–193PubMedGoogle Scholar
  50. 50.
    Bonilla E, Tanji K, Hirano M et al (1999) Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1410:171–182PubMedCrossRefGoogle Scholar
  51. 51.
    Annex BH, Williams RS (1990) Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol Cell Biol 10:5671–5678PubMedGoogle Scholar
  52. 52.
    Schapira AH, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269PubMedCrossRefGoogle Scholar
  53. 53.
    Orth M, Schapira AH (2002) Mitochondrial involvement in Parkinson’s disease. Neurochem Int 40:533–541PubMedCrossRefGoogle Scholar
  54. 54.
    van der Walt JM, Nicodemus KK, Martin ER et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72:804–811PubMedCrossRefGoogle Scholar
  55. 55.
    Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812PubMedCrossRefGoogle Scholar
  56. 56.
    Maechler P, Wollheim CB (2000) Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol 529 Pt 1:49–56PubMedCrossRefGoogle Scholar
  57. 57.
    Maritim AC, Sanders RA, Watkins JB 3rd. (2003) Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 17:24–38PubMedCrossRefGoogle Scholar
  58. 58.
    van den Ouweland JM, Lemkes HH, Ruitenbeek W et al (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1:368–371PubMedCrossRefGoogle Scholar
  59. 59.
    Otabe S, Yasuda K, Mori Y et al (1999) Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem Biophys Res Commun 259:149–156PubMedCrossRefGoogle Scholar
  60. 60.
    Harman D (1972) The biologic clock: The mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  61. 61.
    Frenzel H, Feimann J (1984) Age-dependent structural changes in the myocardium of rats. A quantitative lightand electron-microscopic study on the right and left chamber wall. Mech Ageing Dev 27:29–41PubMedCrossRefGoogle Scholar
  62. 62.
    Kopsidas G, Kovalenko SA, Kelso JM, Linnane AW (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res 421:27–36PubMedGoogle Scholar
  63. 63.
    Liu VW, Zhang C, Nagley P (1998) Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res 26:1268–1275PubMedCrossRefGoogle Scholar
  64. 64.
    Kwong LK, Sohal RS (2000) Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373:16–22PubMedCrossRefGoogle Scholar
  65. 65.
    Martinez M, Hernandez AI, Martinez N, Ferrandiz ML (1996) Age-related increase in oxidized proteins in mouse synaptic mitochondria. Brain Res 731:246–248PubMedCrossRefGoogle Scholar
  66. 66.
    Andreu AL, Arbos MA, Perez-Martos A et al (1998) Reduced mitochondrial DNA transcription in senescent rat heart. Biochem Biophys Res Commun 252:577–581PubMedCrossRefGoogle Scholar
  67. 67.
    Sugiyama H, et al (1993) Chemistry of oxidative DNA strand scission. Nucleic Acids Symp Ser: 125–126Google Scholar
  68. 68.
    Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 93:15364–15369PubMedCrossRefGoogle Scholar
  69. 69.
    Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347PubMedCrossRefGoogle Scholar
  70. 70.
    Melov S, Hertz GZ, Stormo GD, Johnson TE (1994) Detection of deletions in the mitochondrial genome of Caenorhabditis elegans. Nucleic Acids Res 22:1075–1078PubMedCrossRefGoogle Scholar
  71. 71.
    Cortopassi GA, Arnheim N (1992) Using the polymerase chain reaction to estimate mutation frequencies and rates in human cells. Mutat Res 277:239–249PubMedGoogle Scholar
  72. 72.
    Kadenbach B, Munscher C, Frank V et al (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338:161–172PubMedGoogle Scholar
  73. 73.
    Cottrell DA, Blakely EL, Johnson MA et al (2001) Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22:265–272PubMedCrossRefGoogle Scholar
  74. 74.
    Michikawa Y, Mazzucchelli F, Bresolin N et al (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779PubMedCrossRefGoogle Scholar
  75. 75.
    Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423PubMedCrossRefGoogle Scholar
  76. 76.
    Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423PubMedCrossRefGoogle Scholar
  77. 77.
    Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376PubMedGoogle Scholar
  78. 78.
    Forsmark-Andree P, Lee CP, Dallner G, Ernster L (1997) Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 22:391–400PubMedCrossRefGoogle Scholar
  79. 79.
    Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: Role of cardiolipin. FEBS Lett 406:136–138PubMedCrossRefGoogle Scholar
  80. 80.
    Anson RM, Hudson E, Bohr VA (2000) Mitochondrial endogenous oxidative damage has been overestimated. FASEB J 14:355–360PubMedGoogle Scholar
  81. 81.
    Gredilla R, Barja G, Lopez-Torres M (2001) Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source. J Bioenerg Biomembr 33:279–287PubMedCrossRefGoogle Scholar
  82. 82.
    Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627PubMedCrossRefGoogle Scholar
  83. 83.
    Sohal RS, Sohal BH, Brunk UT (1990) Relationship between antioxidant defenses and longevity in different mammalian species. Mech Ageing Dev 53:217–227PubMedCrossRefGoogle Scholar
  84. 84.
    Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49:129–135PubMedCrossRefGoogle Scholar
  85. 85.
    Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Daniel Edgar
    • 1
  • Aleksandra Trifunovic
    • 1
  1. 1.Department of Laboratory Medicine Division of Metabolic DiseasesNovum Karolinska InstituteStockholmSweden

Personalised recommendations