Advertisement

Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle

  • David A. Hood
  • Beatrice Chabi
  • Keir Menzies
  • Michael O’Leary
  • Donald Walkinshaw

Abstract

Regularly performed endurance exercise has a number of health benefits, including improvements in cardiovascular function, muscle metabolism, and increased work capacity. The increase in endurance is a result of greater oxygen delivery and extraction by the exercising muscle. Oxygen extraction is a result of an improved capillary-to-fiber ratio, as well as a higher mitochondrial content within muscle. The increase in mitochondrial content is a well-established and dramatic adaptation within the exercised muscle, but the molecular mechanisms underlying this change in muscle phenotype are just beginning to be clarified. An understanding of the cellular processes involved could help in the development of therapeutic applications other than exercise, and may help us better comprehend the pathology of mitochondrial diseases. This increase in mitochondrial content which occurs as a result of regular exercise is referred to as mitochondrial biogenesis. The process is complex because mitochondria are composed of proteins encoded by both nuclear and mitochondrial DNA (mtDNA). The major steps involved include: (1) signaling events leading to transcription, brought about by each exercise bout; (2) transcriptional regulation of nuclear-encoded genes encoding mitochondrial proteins, mainly mediated by the coactivator PGC-1α; (3) control of mitochondrial DNA gene expression by the transcription factor Tfam; (4) mitochondrial fission and fusion mechanisms; (5) import of nuclear-derived gene products into the mitochondrion via the protein import machinery; and (6) assembly of nuclear- and mitochondrially-encoded subunits into functional holoenzyme complexes.

Keywords

Skeletal Muscle Mitochondrial Biogenesis Human Skeletal Muscle Free Radic Biol Mitochondrial Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chabi B, Adhihetty PJ, Ljubicic V, Hood DA (2005) How is mitochondrial biogenesis affected in mitochondrial disease? Med Sci Sports Exerc 37:2102–2110PubMedCrossRefGoogle Scholar
  2. 2.
    Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275PubMedCrossRefGoogle Scholar
  3. 3.
    Koulmann N, Bigard AX (2006) Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 452:125–139PubMedCrossRefGoogle Scholar
  4. 4.
    Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRefGoogle Scholar
  5. 5.
    Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801PubMedCrossRefGoogle Scholar
  6. 6.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366PubMedCrossRefGoogle Scholar
  7. 7.
    Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89PubMedCrossRefGoogle Scholar
  8. 8.
    Schreiber SN, Emter R, Hock MB et al (2004)The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator lalpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101:6472–6477PubMedCrossRefGoogle Scholar
  9. 9.
    Puigserver P, Adelmant G, Wu Z et al (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371PubMedCrossRefGoogle Scholar
  10. 10.
    Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155PubMedCrossRefGoogle Scholar
  11. 11.
    Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK. Genes Dev 18:278–289PubMedCrossRefGoogle Scholar
  12. 12.
    Boppart MD, Asp S, Wojtaszewski JF et al (2000) Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 526 Pt 3:663–669Google Scholar
  13. 13.
    Irrcher I, Adhihetty PJ, Sheehan T et al (2003) PPARgamma coactivator-lalpha expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 284:C1669–C1677PubMedGoogle Scholar
  14. 14.
    Russell AP, Feilchenfeldt J, Schreiber S et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881PubMedCrossRefGoogle Scholar
  15. 15.
    Akimoto T, Pohnert SC, Li P et al (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593PubMedCrossRefGoogle Scholar
  16. 16.
    Teyssier C, Ma H, Emter R et al (2005) Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19:1466–1473PubMedCrossRefGoogle Scholar
  17. 17.
    Lerin C, Rodgers JT, Kalume DE et al (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438PubMedCrossRefGoogle Scholar
  18. 18.
    Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRefGoogle Scholar
  19. 19.
    Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886PubMedCrossRefGoogle Scholar
  20. 20.
    Norrbom J, Sundberg CJ, Ameln H et al (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194PubMedCrossRefGoogle Scholar
  21. 21.
    Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858PubMedCrossRefGoogle Scholar
  22. 22.
    Terada S, Goto M, Kato M et al (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350–354PubMedCrossRefGoogle Scholar
  23. 23.
    Terada S, Kawanaka K, Goto M et al (2005) Effects of high-intensity intermittent swimming on PGC-1alpha protein expression in rat skeletal muscle. Acta Physiol Scand 184:59–65PubMedCrossRefGoogle Scholar
  24. 24.
    Cartoni R, Leger B, Hock MB et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor EB, Lamb JD, Hurst RW et al (2005) Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: Effects of time and intensity. Am J Physiol Endocrinol Metab 289:E960–E968PubMedCrossRefGoogle Scholar
  26. 26.
    Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116PubMedCrossRefGoogle Scholar
  27. 27.
    McKinsey TA, Zhang CL, Olson EN (2002) MEF2: A calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47PubMedCrossRefGoogle Scholar
  28. 28.
    Akimoto T, Sorg BS, Yan Z (2004) Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol 287:C790–C796PubMedCrossRefGoogle Scholar
  29. 29.
    Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multisystem energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101PubMedCrossRefGoogle Scholar
  30. 30.
    Arany Z, He H, Lin J et al (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271PubMedCrossRefGoogle Scholar
  31. 31.
    Lin J, Wu PH, Tarr PTet al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135PubMedCrossRefGoogle Scholar
  32. 32.
    Hennig R, Lomo T(1985) Firing patterns of motor units in normal rats. Nature 314:164–166PubMedCrossRefGoogle Scholar
  33. 33.
    Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202PubMedCrossRefGoogle Scholar
  34. 34.
    Williams RS, Salmons S, Newsholme EA et al (1986) Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem 261:376–380PubMedGoogle Scholar
  35. 35.
    Horsley V, Friday BB, Matteson S et al (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153:329–338PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Roves PM, Huss J, Holloszy JO (2006) Role of calcineurin in exerciseinduced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 290:E1172–E1179PubMedCrossRefGoogle Scholar
  37. 37.
    Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352PubMedCrossRefGoogle Scholar
  38. 38.
    Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99:414–423PubMedCrossRefGoogle Scholar
  39. 39.
    Freyssenet D, DiCarlo M, Escobar P et al (1999) Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Can J Physiol Pharmacol 77:29–35PubMedCrossRefGoogle Scholar
  40. 40.
    Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79:675–686PubMedGoogle Scholar
  41. 41.
    Chinnery PF, Turnbull DM (2001) Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 106:94–101PubMedCrossRefGoogle Scholar
  42. 42.
    Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9PubMedCrossRefGoogle Scholar
  43. 43.
    Chomyn A, Attardi G (2003) MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304:519–529PubMedCrossRefGoogle Scholar
  44. 44.
    Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360PubMedCrossRefGoogle Scholar
  45. 45.
    Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197PubMedGoogle Scholar
  46. 46.
    Sudoyo H, Suryadi H, Sitorus N et al (2003) Mitochondrial genome and susceptibility to diabetes mellitus. Adv Exp Med Biol 531:19–36PubMedGoogle Scholar
  47. 47.
    Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922PubMedCrossRefGoogle Scholar
  48. 48.
    Powers SK, Criswell D, Lawler J et al (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266:R375–R380PubMedGoogle Scholar
  49. 49.
    Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541PubMedGoogle Scholar
  50. 50.
    Richter C (1988) Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 241:1–5PubMedCrossRefGoogle Scholar
  51. 51.
    McArdle A, van der MJ, Close GL et al (2004) Role of mitochondrial Superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol 286:C1152–C1158PubMedCrossRefGoogle Scholar
  52. 52.
    Jackson MJ (2005) Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philos Trans R Soc Lond B Biol Sci 360:2285–2291PubMedCrossRefGoogle Scholar
  53. 53.
    Pattwell DM, McArdle A, Morgan JE et al (2004) Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 37:1064–1072PubMedCrossRefGoogle Scholar
  54. 54.
    Barrientos A, Casademont J, Cardellach F et al (1997) Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochem Mol Med 62:165–171PubMedCrossRefGoogle Scholar
  55. 55.
    Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging-and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296PubMedCrossRefGoogle Scholar
  56. 56.
    Pesce V, Cormio A, Fracasso F et al (2005) Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles. J Gerontol A Biol Sci Med Sci 60:715–723PubMedGoogle Scholar
  57. 57.
    Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15PubMedCrossRefGoogle Scholar
  58. 58.
    Suliman HB, Carraway MS, Welty-Wolf KE et al (2003) Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518PubMedCrossRefGoogle Scholar
  59. 59.
    Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304PubMedGoogle Scholar
  60. 60.
    Fujii N, Hayashi T, Hirshman MF et al (2000) Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal mus-cle. Biochem Biophys Res Commun 273:1150–1155PubMedCrossRefGoogle Scholar
  61. 61.
    Hamilton SR, Stapleton D, O’Donnell JB Jr. et al (2001) An activating mutation in the gammal subunit of the AMP-activated protein kinase. FEBS Lett 500:163–168PubMedCrossRefGoogle Scholar
  62. 62.
    Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223:217–222PubMedCrossRefGoogle Scholar
  63. 63.
    Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565PubMedCrossRefGoogle Scholar
  64. 64.
    Stephens TJ, Chen ZP, Canny BJ et al (2002) Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282:E688–E694PubMedGoogle Scholar
  65. 65.
    Bergeron R, Ren JM, Cadman KS et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346PubMedGoogle Scholar
  66. 66.
    Zong H, Ren JM, Young LH et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987PubMedCrossRefGoogle Scholar
  67. 67.
    Winder WW, Holmes BF, Rubink DS et al (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219–2226PubMedGoogle Scholar
  68. 68.
    Gordon JW, Rungi AA, Inagaki H, Hood DA (2001) Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396PubMedCrossRefGoogle Scholar
  69. 69.
    Bengtsson J, Gustafsson T, Widegren U et al (2001) Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 443:61–66PubMedCrossRefGoogle Scholar
  70. 70.
    Ferguson AB Jr., Vaughan L, Ward L (1957) A study of disuse atrophy of skeletal muscle in the rabbit. J Bone Joint Surg Am 39-A:583–596PubMedGoogle Scholar
  71. 71.
    Bajusz E (1958) Disuse atrophy of skeletal muscle in the rat, aggravated by cortisol and various stress conditions. Can J Biochem Physiol 36:824–831PubMedGoogle Scholar
  72. 72.
    Koski CL, Max SR (1974) Substrate utilization by the denervated rat emidiaphragm. Exp Neurol 43:547–554PubMedCrossRefGoogle Scholar
  73. 73.
    Max SR (1972) Disuse atrophy of skeletal muscle: Loss of functional activity of mitochondria. Biochem Biophys Res Commun 46:1394–1398PubMedCrossRefGoogle Scholar
  74. 74.
    Max SR (1973) Muscular atrophy: Activation of mitochondrial ATPase. Biochem Biophys Res Commun 52:1278–1284PubMedCrossRefGoogle Scholar
  75. 75.
    Rifenberick DH, Gamble JG, Max SR (1973) Response of mitochondrial enzymes to decreased muscular activity. Am J Physiol 225:1295–1299PubMedGoogle Scholar
  76. 76.
    Rifenberick DH, Max SR (1974) Metabolic responses of disused rat plantaris and soleus muscles to increased activity. Am J Physiol 227:1025–1029PubMedGoogle Scholar
  77. 77.
    Rifenberick DH, Max SR (1974) Substrate utilization by disused rat skeletal muscles. Am J Physiol 226:295–297PubMedGoogle Scholar
  78. 78.
    Bell GJ, Martin TP, Ilyina-Kakueva EI et al (1992) Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight. J Appl Physiol 73:493–497PubMedGoogle Scholar
  79. 79.
    Connor MK, Hood DA (1998) Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J Appl Physiol 84:593–598PubMedGoogle Scholar
  80. 80.
    Booth FW, Lou W, Hamilton MT, Yan Z (1996) Cytochrome c mRNA in skeletal muscles of immobilized limbs. J Appl Physiol 81:1941–1945PubMedGoogle Scholar
  81. 81.
    Desplanches D, Kayar SR, Sempore B et al (1990) Rat soleus muscle ultrastructure after hindlimb suspension. J Appl Physiol 69:504–508PubMedGoogle Scholar
  82. 82.
    Pesce V, Cormio A, Fracasso F et al (2002) Rat hindlimb unloading: Soleus and Extensor Digitorum Longus histochemistry, mitochondrial DNA content and mitochondrial DNA deletions. Biosci Rep 22:115–125PubMedCrossRefGoogle Scholar
  83. 83.
    Yajid F, Mercier JG, Mercier BM et al (1998) Effects of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats. J Appl Physiol 84:479–485PubMedGoogle Scholar
  84. 84.
    Csukly K, Ascah A, Matas J et al (2006) Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. J Physiol 574:319–327PubMedCrossRefGoogle Scholar
  85. 85.
    Joffe M, Savage N, Isaacs H (1983) Respiratory activities of subsarcolemmal and intermyofibrillar mitochondrial populations isolated from denervated and control rat soleus muscles. Comp Biochem Physiol B 76:783–787PubMedCrossRefGoogle Scholar
  86. 86.
    Siu PM, Alway SE (2005) Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 565:309–323PubMedCrossRefGoogle Scholar
  87. 87.
    Desplanches D, Hoppeler H, Mayet MH et al (1998) Effects of bedrest on deltoideus muscle morphology and enzymes. Acta Physiol Scand 162:135–140PubMedCrossRefGoogle Scholar
  88. 88.
    Wicks KL, Hood DA (1991) Mitochondrial adaptations in denervated muscle: Relationship to muscle performance. Am J Physiol 260:C841–C850PubMedGoogle Scholar
  89. 89.
    Babij P, Booth FW(1988) Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol 254:C651–C656PubMedGoogle Scholar
  90. 90.
    Koonen DP, Benton CR, Arumugam Y et al (2004) Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab 286:E1042–E1049PubMedCrossRefGoogle Scholar
  91. 91.
    Washington TA, Reecy JM, Thompson RW et al (2004) Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle. J Appl Physiol 97:1424–1430PubMedCrossRefGoogle Scholar
  92. 92.
    Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 264:C383–C389PubMedGoogle Scholar
  93. 93.
    Krieger DA, Tate CA, Millin-Wood J, Booth FW (1980) Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48:23–28PubMedGoogle Scholar
  94. 94.
    Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289:C994–C1001PubMedCrossRefGoogle Scholar
  95. 95.
    Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27:349–395PubMedGoogle Scholar
  96. 96.
    Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16PubMedCrossRefGoogle Scholar
  97. 97.
    Nomura K, Imai H, Koumura T et al (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193PubMedCrossRefGoogle Scholar
  98. 98.
    Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRefGoogle Scholar
  99. 99.
    Dejean LM, Martinez-Caballero S, Kinnally KW (2006) Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13:1387–1395PubMedCrossRefGoogle Scholar
  100. 100.
    Siu PM, Alway SE (2006) Deficiency of the Bax gene attenuates denervationinduced apoptosis. Apoptosis 11:967–981PubMedCrossRefGoogle Scholar
  101. 101.
    Muller-Hocker J (1990) Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: An age-related alteration. J Neurol Sci 100:14–21PubMedCrossRefGoogle Scholar
  102. 102.
    Muller-Hocker J, Schneiderbanger K, Stefani FH, Kadenbach B (1992) Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing—A cy to chemicalimmunohisto chemical study. Mutat Res 275:115–124PubMedGoogle Scholar
  103. 103.
    Boffoli D, Scacco SC, Vergari R et al (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82PubMedGoogle Scholar
  104. 104.
    Cooper JM, Mann VM, Schapira AH (1992) Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci 113:91–98PubMedCrossRefGoogle Scholar
  105. 105.
    Hagen JL, Krause DJ, Baker DJ et al (2004) Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. J Gerontol A Biol Sci Med Sci 59:1099–1110PubMedGoogle Scholar
  106. 106.
    Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 93:15364–15369PubMedCrossRefGoogle Scholar
  107. 107.
    Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526 Pt 1:203–210Google Scholar
  108. 108.
    Drew B, Phaneuf S, Dirks A et al (2003) Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284:R474–R480PubMedGoogle Scholar
  109. 109.
    Brierley EJ, Johnson MA, James OF, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. QJM 89:251–258PubMedGoogle Scholar
  110. 110.
    Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078PubMedGoogle Scholar
  111. 111.
    Lezza AM, Boffoli D, Scacco S et al (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205:772–779PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang C, Liu VW, Addessi CL et al (1998) Differential occurrence of mutations in mitochondrial DNA of human skeletal muscle during aging. Hum Mutat 11:360–371PubMedCrossRefGoogle Scholar
  113. 113.
    Fayet G, Jansson M, Sternberg D et al (2002) Ageing muscle: Clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12:484–493PubMedCrossRefGoogle Scholar
  114. 114.
    Kopsidas G, Kovalenko SA, Kelso JM, Linnane AW (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res 421:27–36PubMedGoogle Scholar
  115. 115.
    Pesce V, Cormio A, Fracasso F et al (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233PubMedCrossRefGoogle Scholar
  116. 116.
    Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J15:322–332PubMedCrossRefGoogle Scholar
  117. 117.
    Bua EA, McKiernan SH, Wanagat J et al (2002) Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol 92:2617–2624PubMedGoogle Scholar
  118. 118.
    Lopez ME, Van Zeeland NL, Dahl DB et al (2000) Cellular phenotypes of ageassociated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat Res 452:123–138PubMedGoogle Scholar
  119. 119.
    Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  120. 12O.
    Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470PubMedGoogle Scholar
  121. 121.
    .Capel F, Buffiere C, Patureau MP, Mosoni L (2004) Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 125:367–373PubMedCrossRefGoogle Scholar
  122. 122.
    Lee J, Yu BP, Herlihy JT (1999) Modulation of cardiac mitochondrial membrane fluidity by age and calorie intake. Free Radic Biol Med 26:260–265PubMedCrossRefGoogle Scholar
  123. 123.
    Muscari C, Giaccari A, Stefanelli C et al (1996) Presence of a DNA-4236 bp deletion and 8-hydroxy-deoxyguanosine in mouse cardiac mitochondrial DNA during aging. Aging (Milano) 8:429–433Google Scholar
  124. 124.
    Pansarasa O, Bertorelli L, Vecchiet J et al (1999) Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med 27:617–622PubMedCrossRefGoogle Scholar
  125. 125.
    Ji LL, Wu E, Thomas DP (1991) Effect of exercise training on antioxidant and metabolic functions in senescent rat skeletal muscle. Gerontology 37:317–325PubMedGoogle Scholar
  126. 126.
    Sohal RS, Arnold LA, Sohal BH (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic Biol Med 9:495–500PubMedCrossRefGoogle Scholar
  127. 127.
    Tonkonogi M, Fernstrom M, Walsh B et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch 446:261–269PubMedGoogle Scholar
  128. 128.
    Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul Integr Comp Physiol 282:R519–R527PubMedGoogle Scholar
  129. 129.
    Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39PubMedCrossRefGoogle Scholar
  130. 130.
    Barrientos A, Casademont J, Rotig A et al (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229:536–539PubMedCrossRefGoogle Scholar
  131. 131.
    Coggan AR, Spina RJ, King DS et al (1992) Skeletal muscle adaptations to endurance training in 60to 70-yr-old men and women. J Appl Physiol 72:1780–1786PubMedGoogle Scholar
  132. 132.
    0rlander J, Aniansson A (1980) Effect of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men. Acta Physiol Scand 109:149–154CrossRefGoogle Scholar
  133. 133.
    Short KR, Vittone JL, Bigelow ML et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896PubMedCrossRefGoogle Scholar
  134. 134.
    Taivassalo T, Shoubridge EA, Chen J et al (2001) Aerobic conditioning in patients with mitochondrial myopathies: Physiological, biochemical, and genetic effects. Ann Neurol 50:133–141PubMedCrossRefGoogle Scholar
  135. 135.
    Fielding RA, Meydani M (1997) Exercise, free radical generation, and aging. Aging (Milano) 9:12–18Google Scholar
  136. 136.
    Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205PubMedCrossRefGoogle Scholar
  137. 137.
    Gunduz F, Senturk UK, Kuru O et al (2004) The effect of 1 year’s swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 53:171–176PubMedGoogle Scholar
  138. 138.
    Radak Z, Naito H, Kaneko T et al (2002) Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch 445:273–278PubMedCrossRefGoogle Scholar
  139. 139.
    Judge S, Jang YM, Smith A et al (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289:R1564–R1572PubMedGoogle Scholar
  140. 140.
    Sandri M, Carraro U, Podhorska-Okolov M et al (1995) Apoptosis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. FEBS Lett 373:291–295PubMedCrossRefGoogle Scholar
  141. 141.
    Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152PubMedGoogle Scholar
  142. 142.
    Allen DL, Linderman JK, Roy RR et al (1997) Apoptosis: A mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David A. Hood
    • 1
  • Beatrice Chabi
    • 2
  • Keir Menzies
    • 2
  • Michael O’Leary
    • 2
  • Donald Walkinshaw
    • 2
  1. 1.School of Kinesiology and Health Science and Department of BiologyYork UniversityTorontoCanada
  2. 2.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations