A Review of Current Strategies to Achieve Tolerance in Animal Models

  • Dragos Zamfirescu
  • Ioan Lascar


The current objective of transplantation is to prolong allograft survival indefinitely without the complications associated with chronic immunosuppression (infection, malignancy, adverse metabolic effects, drug toxicity) and without the development of chronic rejection. However, the ultimate goal of all transplant surgeons, the “Holy Grail” of transplantation, is to achieve indefinite clinical allograft acceptance without the need for long-term immunosuppression while the immune response to all other antigens remains intact — donor-specific tolerance [1, 2]. Over the last 50 years, various strategies have been tried to induce transplantation tolerance. Many of these have been validated in rodent models but have shown less degrees of success after extension to large animals, nonhuman primates and humans.


Graft Versus Host Disease Tolerance Induction Skin Allograft Mixed Chimerism Composite Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fehr T, Sykes M (2004) Tolerance induction in clinical transplantation. Transpl Immunol 13:117–130PubMedCrossRefGoogle Scholar
  2. 2.
    Calne RY (2004) Prope tolerance: the future of organ transplantation — from the laboratory to the clinic. Transplantation 77:930–932PubMedCrossRefGoogle Scholar
  3. 3.
    Lee WP, Yaremchuk MJ et al (1991) Relative antigenicity of components of vascularized limb allografts. Plast Reconstr Surg 87:401–411PubMedCrossRefGoogle Scholar
  4. 4.
    Siemionow M, Ozer K (2002) Advances in composite tissue allograft transplantation related to the hand and upper extremity. J Hand Surg [Am] 27:565–580CrossRefGoogle Scholar
  5. 5.
    Mathes DW, Randolph MA, Solari MG (2003) Split tolerance to a composite tissue allograft in a swine model. Transplantation 75:25–31PubMedCrossRefGoogle Scholar
  6. 6.
    Jones JW, Gruber SA et al (2000) Successful hand transplantation: one-year follow-up. Louisville hand transplant team. N Engl J Med 343:468–473PubMedCrossRefGoogle Scholar
  7. 7.
    Dubernard JM, Owen E, Herzberg G et al (1999) Human hand allograft: report on first 6 months. Lancet 353:1315–1320PubMedCrossRefGoogle Scholar
  8. 8.
    Lukomska B, Janczewska S, Durlik M et al (2000) Kinetics of bone marrow repopulation in lethally irradiated rats after transplantation of vascularized bone marrow in syngeneic hind limb. Ann Transplant 5:14–20PubMedGoogle Scholar
  9. 9.
    Lukomska B, Durlik M, Cybulska E, Olszewski WL (1996) Reconstitution of lymphoid tissue after vascularized bone marrow transplantation. Ann Transplant 1:67–69PubMedGoogle Scholar
  10. 10.
    Suzuki H, Patel N, Matthews M et al (2000) Vascularized bone marrow transplantation: A new surgical approach using isolated femoral bone/bone marrow. J Surg Res 89:176–183PubMedCrossRefGoogle Scholar
  11. 11.
    Hewitt CW, Ramsamooj R, Patel MP et al (1990) Development of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts. Transplantation 50:766–772PubMedCrossRefGoogle Scholar
  12. 12.
    Lukomska B, Durlin M, Pienkowska B, Olszewski WL (1990) Transplantation of bone marrow with vascularized bone. Transplant Proc 22:2225–2256Google Scholar
  13. 13.
    Talmor M, Steinman RM, Codner CM et al (1995) Bone marrow-derived chimerism in non-irradiated, cyclosporin-treated rats receiving microvascularized limb transplants: evidence for donor-derived dendritic cells in recipient lymphoid tissues. Immunology 86:448–455PubMedGoogle Scholar
  14. 14.
    Hoffman LA, Conder MK, Shuster BA et al (1992) Donor leukocyte migration following extremity transplantation in an experimental model. Plast Reconstr Surg 90:999–1006PubMedCrossRefGoogle Scholar
  15. 15.
    Durlik M, Lukomska B, Ziolkowska H et al (1998) Microchimerism following allogeneic vascularized bone marrow transplantation — its possible role in induction of posttransplantation tolerance. Ann Transplant 3:24–26PubMedGoogle Scholar
  16. 16.
    Durlik M, Lukomska B, Religa P et al (1998) Tolerance induction following allogeneic vascularized bone marrow transplantation: The possible role of microchimerism. Transpl Int 11[Suppl. 1]:299–302CrossRefGoogle Scholar
  17. 17.
    Tsuchida Y, Usui M, Murakami M et al (1997) Vascularized bone marrow allotransplantation in rats prolongs a simultaneous skin allograft. Transplant Proc 29:1732–1733PubMedCrossRefGoogle Scholar
  18. 18.
    Llull R, Murase N, Ye Q et al (1995) Vascularized bone marrow transplantation in rats: evidence for amplification of hematolymphoid chimerism and freedom from graft-versus-host reaction. Transplant Proc 27:164–165PubMedGoogle Scholar
  19. 19.
    Tsuchida Y, Usui M, Uede T (2002) Vascularized bone-marrow allotransplantation in rats prolongs the survival of simultaneously grafted alloskin. J Reconstr Microsurg 18:289–293PubMedCrossRefGoogle Scholar
  20. 20.
    Morris PJ (2001) Kidney transplantation: principle and practice, 5th edn. WB Saunders, Philadelphia, pp 326–343Google Scholar
  21. 21.
    Thomas JM, Neville DM, Contreras JL et al (1997) Preclinical studies of allograft tolerance in rhesus monkeys: a novel anti-CD3-immunotoxin given peritransplant with donor bone marrow induces operational tolerance to kidney allografts. Transplantation 64:124–135PubMedCrossRefGoogle Scholar
  22. 22.
    Calne RY (2004) Prope tolerance — the future of organ transplantation from the laboratory to the clinic. Transpl Immunol 13:83–86PubMedCrossRefGoogle Scholar
  23. 23.
    Cortesini R, Suciu-Foca N (2004) The concept of “partial” clinical tolerance. Transpl Immunol 13:101–104PubMedCrossRefGoogle Scholar
  24. 24.
    Siemionow M, Oke R, Ozer K et al (2002) Induction of donor-specific tolerance in rat hind-limb allografts under antilymphocyte serum and cyclosporine A protocol. J Hand Surg [Am] 27:1095–1103CrossRefGoogle Scholar
  25. 25.
    Siemionow M, Ortak T, Izycki D et al (2002) Induction of tolerance in composite-tissue allografts. Transplantation 74:1211–1217PubMedCrossRefGoogle Scholar
  26. 26.
    Ozer K, Oke R, Gurunluoglu R et al (2003) Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: Effect of duration of the treatment. Transplantation 75:31–36PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas F, Ray P, Thomas JM (2000) Immunological tolerance as an adjunct to allogeneic tissue grafting. Microsurgery 20:435–440PubMedCrossRefGoogle Scholar
  28. 28.
    Siemionow MZ, Izycki DM, Zielinski M (2003) Donorspecific tolerance in fully major histocompatibility complex-mismatched limb allograft transplants under an anti-__ T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation 76:1662PubMedCrossRefGoogle Scholar
  29. 29.
    Kirk AD, Tadaki DK et al (2001) Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 72:377–384PubMedCrossRefGoogle Scholar
  30. 30.
    Kirk AD, Burkly LC et al (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 5:686–693PubMedCrossRefGoogle Scholar
  31. 31.
    Yamada A, Sayegh MH (2002) The CD154-CD40 costimulatory pathway in transplantation. Transplantation 73[Suppl. 1]:36–39CrossRefGoogle Scholar
  32. 32.
    Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438PubMedCrossRefGoogle Scholar
  33. 33.
    Elster EA, Xu H et al (2000) Primary skin graft acceptance with anti-CD154 in a non-human primate skin graft model. Transplantation 69[Suppl]:239Google Scholar
  34. 34.
    Llull R (1998) An open proposal for clinical composite tissue allotransplantation. Transplant Proc 30:2692–2696PubMedCrossRefGoogle Scholar
  35. 35.
    Iwasaki N, Gohda T, Yoshioka C et al (2002) Feasibility of immunosuppression in composite tissue allografts by systemic administration of CTLA4Ig. Transplantation 73:334–340PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas JM, Contreras JL, Jiang XL et al (1999) Peritransplant tolerance induction in macaques: early events reflecting the unique synergy between immunotoxin and deoxyspergualin. Transplantation 68:1660–163PubMedCrossRefGoogle Scholar
  37. 37.
    Delis S, Ciancio G, Burke GW et al (2004) Donor bone marrow transplantation. Chimerism and tolerance. Transpl Immunol 13:105–115PubMedCrossRefGoogle Scholar
  38. 38.
    Bushell A, Karim M et al (2003) Pretransplant blood transfusion without additional immunotherapy generates CD25+ CD4+ regulatory T cells: a potential explanation for the blood-transfusion effect Transplantation 76:449–455PubMedCrossRefGoogle Scholar
  39. 39.
    Kann BR, Furnas DW, Hewitt CW (2000) Past, present, and future research in the field of composite tissue allotransplantation. Microsurgery 20:393–399PubMedCrossRefGoogle Scholar
  40. 40.
    Poole M, Bowen JE, Batchelor JR (1976) Prolonged survival of rat leg allografts due to immunological enhancement. Transplantation 22:108–111PubMedCrossRefGoogle Scholar
  41. 41.
    Black KS, Hewitt CW, Woodard TL et al (1982) Efforts to enhance survival of limb allografts by prior administration of whole blood in rats using a new survival end-point. J Microsurg 3:162–167PubMedCrossRefGoogle Scholar
  42. 42.
    Starzl TE, Demetris AJ, Murase N et al (1992) Cell migration, chimerism, and graft acceptance Lancet 27:339:1579–1582CrossRefGoogle Scholar
  43. 43.
    Sachs DH (2000) Mixed chimerism as an approach to transplantation tolerance. Clin Immunol 95[Suppl]:63–68CrossRefGoogle Scholar
  44. 44.
    Monaco AP (2001) Strategies for induction of clinical tolerance. Transplant Proc 33:51–56PubMedCrossRefGoogle Scholar
  45. 45.
    Prabhune KA, Gorantla VS, Maldonado C et al (2000) Mixed allogeneic chimerism and tolerance to composite tissue allografts. Microsurgery 20:441–447PubMedCrossRefGoogle Scholar
  46. 46.
    Mathes DW, Randolph MA, Andrew Lee WP (2000) Strategies for tolerance induction to composite tissue allografts. Microsurgery 20:448–452PubMedCrossRefGoogle Scholar
  47. 47.
    Wekerle T, Sykes M (1999) Mixed chimerism as an approach for the induction of transplantation tolerance. Transplantation 68:459–467PubMedCrossRefGoogle Scholar
  48. 48.
    Gorantla VS, Prabhune KA, Perez-Abadia G et al (2003) Composite tissue allotransplantation in chimeric hosts: Part I. Prevention of graft-versus-host disease. Transplantation 75:922–932PubMedCrossRefGoogle Scholar
  49. 49.
    Hewitt CW, Black KS, Dowdy SF et al (1986) Composite tissue (limb) allografts in rats. III. Development of donor-host lymphoid chimeras in long-term survivors. Transplantation 41:39–43PubMedCrossRefGoogle Scholar
  50. 50.
    Hewitt CW, Ramsamooj R, Patel MP et al (1990) Development of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts. Transplantation 50:766–772PubMedCrossRefGoogle Scholar
  51. 51.
    Hewitt CW, Black KS, Fraser LA et al (1988) Lymphocyte chimerism in a full allogeneic composite tissue (rat-limb) allograft model prolonged with cyclosporine. Transplant Proc 20[Suppl. 2]:272–278PubMedGoogle Scholar
  52. 52.
    Yazdi B, Patel MP, Ramsamooj R et al (1991) Vascularized bone marrow transplantation (VBMT): Induction of stable mixed T-cell chimerism and transplantation tolerance in unmodified recipients. Transplant Proc 23:739–740PubMedGoogle Scholar
  53. 53.
    Llull R, Ramsamooj R, Black KS, Hewitt CW (1994) Cellular mechanisms of alloimmune non-responsiveness in tolerant mixed lymphocyte chimeras induced by vascularized bone marrow transplants. Transplant Int 7[Suppl. 1]:453–456CrossRefGoogle Scholar
  54. 54.
    Ramsamooj R, Llull R, Black KS, Hewitt CW (1999) Composite tissue allografts in rats. IV. Graft-versus-host disease in recipients of vascularized bone marrow transplants. Plast Reconstr Surg 104:1365–1371PubMedCrossRefGoogle Scholar
  55. 55.
    Lee WPA, Rubin JP, Cober S et al (1998) Use of swine model in transplantation of vascularized skeletal tissue allografts. Transplant Proc 30:2743–2745PubMedCrossRefGoogle Scholar
  56. 56.
    Cober SR, Randolph MA, Lee WPA (1999) Skin allograft survival following intrathymic injection of donor bone marrow. J Surg Res 85:204–208PubMedCrossRefGoogle Scholar
  57. 57.
    Butler PEM, Lee WPA, van de Water AP, Randolph MA (2000) Neonatal induction of tolerance to skeletal tissue allografts without immunosuppression. Plast Reconstr Surg 105:2424–2430PubMedCrossRefGoogle Scholar
  58. 58.
    Foster RD, Fan L, Neipp M et al (1998) Donor-specific tolerance induction in composite tissue allografts. Am J Surg 176:418–421PubMedCrossRefGoogle Scholar
  59. 59.
    Foster RD, Ascher NL, McCalmont TH et al (2001) Mixed allogeneic chimerism as a reliable model for composite tissue allograft tolerance induction across major and minor histocompatibility barriers. Transplantation 72:791–797PubMedCrossRefGoogle Scholar
  60. 60.
    Suciu-Foca N, Manavalan JS, Scotto L et al (2005) Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells. Int Immunopharmacol 5:7–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Dragos Zamfirescu
    • 1
  • Ioan Lascar
    • 1
  1. 1.Clinic of Plastic Surgery and Reconstructive Microsurgery Bucharest Emergency Hospital“Carol Davila” Bucharest Medical UniversityBucharestRomania

Personalised recommendations