Induction of Tolerance in Allotransplantation

  • Marina Noris
  • Giuseppe Remuzzi


Since the birth of the field of transplantation, progress in transplantation medicine has been rapid. Chemical immunosuppression with corticosteroids and 6-mercaptopurine was first used to enable transplantation between nonidentical individuals in the early 1960s. The introduction of newer immunosuppressive agents and improvements in surgical techniques and ancillary care have made transplantation a routine and preferred therapy for treatment of end-stage renal, cardiac, hepatic and pulmonary failure; pancreatic transplantation provides similar benefits for diabetic patients. At least in the case of renal failure, studies indicate that patients who undergo transplantation have lower morbidity and mortality rates than appropriately matched nontransplanted control patients [1].


Graft Survival Renal Allograft Mixed Chimerism Transplantation Tolerance Costimulatory Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Port FK, Wolfe RA, Mauger EA et al (1993) Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA 270:1339–1343PubMedCrossRefGoogle Scholar
  2. 2.
    Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B (2004) Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 43:378–383CrossRefGoogle Scholar
  3. 3.
    Cecka JM (1994) Outcome statistics of renal transplants with an emphasis on long-term survival. Clin Transplant 8:324–327PubMedGoogle Scholar
  4. 4.
    Denton MD, Magee CC, Sagyeh MH (1999) Immunosuppressive strategies in transplantation. Lancet 353:1083–1091PubMedCrossRefGoogle Scholar
  5. 5.
    Kramer BK, Zulke C, Kammerl MC et al (2003) Cardiovascular risk factors and estimated risk for CAD in a randomized trial comparing calcineurin inhibitors in renal transpplantatin. Am J Transplant 3:982–987PubMedCrossRefGoogle Scholar
  6. 6.
    Womer KL, Vella JP, Sagyeh MH (2000) Chronic allograft dysfunction: mechanisms and new approaches to therapy. Semin Nephrol 20:126–147PubMedGoogle Scholar
  7. 7.
    Billingham RE, Brent L, Medawar PB (1953) Activity aquired tolerance of foreign cells. Nature 172:603–606PubMedCrossRefGoogle Scholar
  8. 8.
    Hariharan S, Johnson CP, Bresnahan BA et al (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. New Eng J Med 342:605–612PubMedCrossRefGoogle Scholar
  9. 9.
    Russell PS, Chase CM, Sykes M et al (2001) Tolerance, mixed chimerism, and chronic transplant arteriopathy. J Immunol 167:5731–5740PubMedGoogle Scholar
  10. 10.
    Kirk AD, Burky LC, Batty DS et al (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 5:686–693PubMedCrossRefGoogle Scholar
  11. 11.
    Thomas JM, Eckhoff DE, Contreras JL et al (2000) Durable donor-specific T and B cell tolerance in rhesus macaques induced with peritransplantation anti-CD3 immunotoxin and deoxyspergualin: absence of chronic allografts nephropathy. Transplantation 69:2497–2503PubMedCrossRefGoogle Scholar
  12. 12.
    Sayegh MH, Turka LA (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821PubMedCrossRefGoogle Scholar
  13. 13.
    Wekerle T, Blaha P, Koporc Z et al (2003) Mechanisms of tolerance induction through the transplantation of donor hematopoietic stem cells: central versus peripheral tolerance. Transplantation 75[Suppl 9]:21–25CrossRefGoogle Scholar
  14. 14.
    Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB (2003) The balance of deletion and regulation in allograft tolreance. Immunol Rev 196:75–84PubMedCrossRefGoogle Scholar
  15. 15.
    Starzl TE, Demetris AJ, Murase N et al (1992) Cell migration, chimerism, and graft acceptance. Lancet 339:1579–1582PubMedCrossRefGoogle Scholar
  16. 16.
    Manilay JO, Pearson DA, Sergio JJ et al (1998) Intrahymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation 66:96–102PubMedCrossRefGoogle Scholar
  17. 17.
    Tomita Y, Khan A, Sykes M (1994) Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J Immunol 153:1087–1098PubMedGoogle Scholar
  18. 18.
    Wekerle T, Kurtz J, Ito H et al (2000) Allogeneic bone marrow transplantation with costimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 6:464–469PubMedCrossRefGoogle Scholar
  19. 19.
    Wekerle T, Sagyeh MH, Hill J et al (1998) Extrahymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J ExpMed 187:2037–2044CrossRefGoogle Scholar
  20. 20.
    Schwartz RH (1999) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356CrossRefGoogle Scholar
  21. 21.
    Chen W, Issazadeh S, Sagyeh MH, Khoury SJ (1997) In vivo mechanisms of acquired thymic tolerance. Cell Immunol 179:165–173PubMedCrossRefGoogle Scholar
  22. 22.
    Chen TC, Cobbold SP, Fairchild PJ, Waldmann H (2004) Generation of anergic and regulatory T cells following prolonged exposure to a harmless antigen. J Immunol 172:5900–5907PubMedGoogle Scholar
  23. 23.
    Vermeiren J, Ceuppens JL, Van Ghelue M et al (2004) Human T cell activation by costimulatory signal-deficient allogeneic cells induces inducible costimulatorexpressing anergic T cells with regulatory cell activity. J Immunol 172: 5371–5378PubMedGoogle Scholar
  24. 24.
    Waldmann H, Qin S, Cobbold S (1992) Monoclonal antibodies as agents to reinduce tolerance in autoimmunity. J Autoimmun 5[Suppl. A]:93–102PubMedCrossRefGoogle Scholar
  25. 25.
    Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210PubMedCrossRefGoogle Scholar
  26. 26.
    Rifle G, Mousson C (2003) Donor-derived hematopoietic cells in organ transplantation: a major step toward allograft tolerance? Transplantation 75[Suppl. 9]:3–7CrossRefGoogle Scholar
  27. 27.
    Monaco AP (2003) Chimerism in organ transplantation: conflicting experiments and clinical observations. Transplantation 75[Suppl. 9]:13–16CrossRefGoogle Scholar
  28. 28.
    Spitzer TR, Delmonico F, Tolkoff-Rubin N et al (1999) Combined histocompatibility leukocytes antigenmatched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68:480–484PubMedCrossRefGoogle Scholar
  29. 29.
    Buhler LH, Spitzer TR, Sykes M et al (2002) Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 74:1405–1409PubMedCrossRefGoogle Scholar
  30. 30.
    Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170PubMedCrossRefGoogle Scholar
  31. 31.
    Sharabi Y, Sachs DH (1989) Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 169:493–502PubMedCrossRefGoogle Scholar
  32. 32.
    Sharabi Y, Sachs DH (1989) Engraftment of allogeneic bone marrow following administration of anti-T cell monoclonal antibodies and low-dose irradiation. Transplant Proc 21:233–235PubMedGoogle Scholar
  33. 33.
    Kawai T, Cosimi AB, Colvin RB et al (1995) Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 59:256–262PubMedGoogle Scholar
  34. 34.
    June CH, Bluestone JA, Nadler LM, Thompson CB (1994) The B7 and CD28 receptor families. Immunol Today 15:321–331PubMedCrossRefGoogle Scholar
  35. 35.
    Seugn E, Mordes JP, Rossini AA, Greiner DL (2003) Hematopoietic chimerism and central tolerance created by peripheral-tolerance induction without myeloablative conditioning. J Clin Invest 112:795–808CrossRefGoogle Scholar
  36. 36.
    Adams AB, Pearson TC, Larsen CP (2003) Heterologous immunity: an overlooked barrier to tolerance. Immunol Rev 196:147–160PubMedCrossRefGoogle Scholar
  37. 37.
    Adams AB, Williams MA, Jones TR et al (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111:1887–1895PubMedCrossRefGoogle Scholar
  38. 38.
    Kawai T, Abrahamian G, Sogawa H et al (2001) Costimulatory blockade for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Transplant Proc 33:221–222PubMedCrossRefGoogle Scholar
  39. 39.
    Barber WH, Mankin JA, Laskow DA et al (1991) Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 51:70–75PubMedCrossRefGoogle Scholar
  40. 40.
    Ciancio G, Miller J, Garcia-Morales RO et al (2001) Sixyear clinical effect of donor bone marrow infusions in renal transplant patients. Transplantation 71:827–835PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia-Morales RO, Ciancio G, Mathew J et al (2001) Perioperative donor bone marrow infusion in cadaver kidney transplant recipents. Transplant Proc 33:3840–3843PubMedCrossRefGoogle Scholar
  42. 42.
    Ciancio G (2003) Donor bone marrow infusion in cadaveric renal transplantation. Transplant Proc 35:871–872PubMedCrossRefGoogle Scholar
  43. 43.
    Light J, Salomon DR, Diethelm AG et al (2002) Bone marrow transfusions in cadaver renal allografts: pilot trials with concurrent controls. Clin Transplant 16:317–324PubMedCrossRefGoogle Scholar
  44. 44.
    Trivedi HL, Shah VR, Vanikar AV et al (2002) High-dose peripheral blood stem cell infusion: a strategy to induce donor-specific hyporesponsiveness to allografts in pediatric renal transplant recipients. Pediatr Transplant 6:63–68PubMedCrossRefGoogle Scholar
  45. 45.
    Millan MT, Shizuru JA, Hoffmann P et al (2002) Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 73:1386–1391PubMedCrossRefGoogle Scholar
  46. 46.
    Benjamin RJ, Waldmann H (1986) Induction of tolerance by monoclonal antibody therapy. Nature 320:449–451PubMedCrossRefGoogle Scholar
  47. 47.
    Qin S, Cobbold SP, Pope H et al (1993) “Infectious” transplantation tolerance. Science 259:974–107PubMedCrossRefGoogle Scholar
  48. 48.
    Moses RD, Sundeen JT, Orr KS et al (1989) Cardiac allograft survival across major histocompatibility complex barriers in the rhesus monkey following T lymphocyte-depleted autologous marrow transplantation. III. Late allograft transplantation. Transplantation 48:769–773PubMedCrossRefGoogle Scholar
  49. 49.
    Lechler RI, Sykes M, Thomson AW, Turka LA (2005) Organ transplantation — how much of the promise has been realized? Nat Med 11:605–613PubMedCrossRefGoogle Scholar
  50. 50.
    Starzl TE, Murase N, Abu-Elmagd K et al (2003) Tolerogenic immunosuppression for organ transplantation. Lancet 361:1502–1510PubMedCrossRefGoogle Scholar
  51. 51.
    Knechtle SJ, Fernandez LA, Pirsch JD et al (2004) Campath-1H in renal transplantation: the University of Wisconsin experience. Surgery 136:754–760PubMedCrossRefGoogle Scholar
  52. 51.
    Calne R, Friend P, Moffatt S et al (1998) Proper tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal alograft recipients. Lancet 351:1701–1702PubMedCrossRefGoogle Scholar
  53. 53.
    Kirk AD, Hale DA, Mannon RB et L (2003) Results from a human renal allograft tolerance trial evaluatign the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76:120–129PubMedCrossRefGoogle Scholar
  54. 54.
    Pearl JP, Parris J, Hale DA et al (2005) Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated Tcell depletion. Am J Transplant 5:465–474PubMedCrossRefGoogle Scholar
  55. 55.
    Ciancio G, Burke GW, Gaynor JJ et al (2004) A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation 77:252–258PubMedCrossRefGoogle Scholar
  56. 56.
    Ciancio G, Burke GW, Gaynor JJ et al (2004) A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. I. Drug interactions and rejection at one year. Transplantation 77:252–258PubMedCrossRefGoogle Scholar
  57. 57.
    Kaufman DB, Leventhal JR, Axelrod D et al (2005) Alemtuzumab induction and prednison-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction — long-term results. Am J Transplant 5:2539–2548PubMedCrossRefGoogle Scholar
  58. 58.
    Jordan MS, Boesteanu A, Reed AJ et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306PubMedCrossRefGoogle Scholar
  59. 59.
    Sakaguchi S (2000) Regulatory T cell: key controllers of immunologic of self-tolerance. Cell 101:455–458PubMedCrossRefGoogle Scholar
  60. 60.
    Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptors alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  61. 61.
    Nakamura K, Kitani A, Fuss I et al (2004) TGF-beta 1 plays an important role in the mechanism of CD24+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834–842PubMedGoogle Scholar
  62. 62.
    Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4(+)CD 25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246PubMedCrossRefGoogle Scholar
  63. 63.
    Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183–190PubMedGoogle Scholar
  64. 64.
    Fallarino F, Grohmann U, Hwang KW et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212PubMedCrossRefGoogle Scholar
  65. 65.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD24+ CD25+ regulatory T cells. Nat Immunol 4:330–336PubMedCrossRefGoogle Scholar
  66. 66.
    Waldmann H, Cobbold S (2001) Regulating the immune repsonse to transplants. A role for CD4+ regulatory cells? Immunity 14:399–406PubMedCrossRefGoogle Scholar
  67. 67.
    Cavinato RA, Casiraghi F, Azzolini N et al (2005) Pretransplant donor peripheral blood mononuclear cells infusion induces transplantation tolerance by generating regulatory T cells. Transplantation 79:1034–1039PubMedCrossRefGoogle Scholar
  68. 68.
    Kingsley CI, Karim M, Bushell AR, Wood KJ (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4 and IL-10-dependent immunoregulation of alloresponses. J Immunol 168:1080–1086PubMedGoogle Scholar
  69. 69.
    Karim M, Kingsley CI, Bushell AR et al (2004) Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymusindependent process. J Immunol 172:923–928PubMedGoogle Scholar
  70. 70.
    Cobbold SP, Castejon R, Adams E et al (2004) Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172:6003–6010PubMedGoogle Scholar
  71. 71.
    Game DS, Hernandez-Fuentes MP, Chaudhry AN, Lechler RI (2003) CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J Am Soc Nephrol 14:1652–1661PubMedCrossRefGoogle Scholar
  72. 72.
    Salam AD, Najafian N, Clarkson MR et al (2003) Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol 14:1643–1651CrossRefGoogle Scholar
  73. 73.
    Groux H, O’Garra A, Bigler M et al (1997) A CD4+ Tcell subset inhibits antigen-specific T-cell responses and prevent collitis. Nature 389:737–742PubMedCrossRefGoogle Scholar
  74. 74.
    Bacchetta R, Sartirana C, Levings MK et al (2002) Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 32:2237–2245PubMedCrossRefGoogle Scholar
  75. 75.
    Barrat FJ, Cua DJ, Boonstra A et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med 195:603–616PubMedCrossRefGoogle Scholar
  76. 76.
    McGuirk P, McCann C, Mills KH (2002) Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1b resopnses by Bordetella pertussis. J Exp Med 195:221–231PubMedCrossRefGoogle Scholar
  77. 77.
    Jonuleit H, Schmitt E, Schuler G et al (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222PubMedCrossRefGoogle Scholar
  78. 78.
    Tomasoni S, Aiello S, Cassis L et al (2005) Dendritic cells genetically engineered with adenoviral vector encoding dnIKK2 induce the formation of potent CD4+ Tregulatory cells. Transplantation 79:1056–1061PubMedCrossRefGoogle Scholar
  79. 79.
    Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 lignad-activated plasmacytoid dendritic cells. J Exp Med 195:695–704PubMedCrossRefGoogle Scholar
  80. 80.
    Dhodapkar MV, Steinmann RM, Krasovsy J et al (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238PubMedCrossRefGoogle Scholar
  81. 81.
    Liu Z, Tugulea S, Cortesini R, Suciu-Foca N (1998) Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28-T cells. Int Immunol 10:775–783PubMedCrossRefGoogle Scholar
  82. 82.
    Chang CC, Ciubotariu R, Manavalan JS et al (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243PubMedCrossRefGoogle Scholar
  83. 83.
    Ciubotariu R, Vasilescu R, Ho E et al (2001) Deletion of T suppressor cells in patients with organ allografts. Hum Immunol 62:15–20PubMedCrossRefGoogle Scholar
  84. 84.
    Tomasoni S, Benigni A (2004) Gene therapy: how to target the kidney. Promises and pitfalls. Curr Gene Ther 4:115–122PubMedCrossRefGoogle Scholar
  85. 85.
    Tomasoni S, Azzollini N, Casiraghi F et al (2000) CTLA4Ig gene transfer prolongs survival and induces donor-specific tolerance in a rat renal allograft. J Am Soc Nephrol 11:747–752PubMedGoogle Scholar
  86. 86.
    Olthoff KM, Judge TA, Gelman AE et al (1998) Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat Med 4:194–200PubMedCrossRefGoogle Scholar
  87. 87.
    Chang CC, Liu T, Feng S et al (2002) Targeted gene therapy with CD40Ig to induce long-term acceptance of liver allografts. Surgery 132:149–156PubMedCrossRefGoogle Scholar
  88. 88.
    Guillot C, Guillonneau C, Mathieu P et al (2002) Prologned blockade of CD40-CD40 ligand interactions by gene transfer of CD40Ig results in long-term heart allograft survival and donor-specific hyporesponsiveness, but does not prevent chronic rejection. J Immunol 168:1600–1609PubMedGoogle Scholar
  89. 89.
    Swenson KM, Ke B, Wang T et al (1998) Gas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation 65:155–160PubMedCrossRefGoogle Scholar
  90. 90.
    Qin L, Chavin KD, Ding Y et al (1996) Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol 156:2316–2323PubMedGoogle Scholar
  91. 91.
    Zuo Z, Wang C, Carpenter D et al (2001) Prolongation of allograft survival with viral IL-10 transfection in a highly histoincompatible model of a rat heart allograft rejection. Transplantation 71:686–691CrossRefGoogle Scholar
  92. 92.
    DeBruyne LA, Li K, Chan SY et al (1998) Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allografts survival inhibiting donor-specific cellular and humoral immune responses. Gene Ther 5:1079–1087PubMedCrossRefGoogle Scholar
  93. 93.
    Adachi O, Yamato E, Kawamoto S et al (2002) High-level expression of viral interleukin-10 in cardiac allografts fails to prolong graft survival. Transplantation 74:1603–1608PubMedCrossRefGoogle Scholar
  94. 94.
    Lehmann TG, Wheller MD, Schwabe RF et al (2000) Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology 32:1255–1264PubMedCrossRefGoogle Scholar
  95. 95.
    Coito AJ, Buelow R, Shen XD et al (2002) Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation 74:96–102PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Marina Noris
    • 1
  • Giuseppe Remuzzi
    • 2
  1. 1.Department of Medicine and TransplantationBergamo Hospital Mario Negri Institute for Pharmacological ResearchBergamoItaly
  2. 2.Department of Medicine and Transplantation and Transplant Research CenterBergamo Hospital Mario Negri Institute for Pharmacological ResearchBergamoItaly

Personalised recommendations