Mechanisms Involved in the Induction of Tolerance in Allogeneic Hand Transplantation: A Proposal

  • Assia Eljaafari
  • Palmina Petruzzo
  • Xavier Martin
  • Jean-Michel Dubernard


The first human unilateral hand allotransplantation was performed in Lyon, in September 1998, followed by other cases all over the world. The technical feasibility of this procedure has thus been demonstrated. Whereas antigenicity of the skin was considered as the major obstacle to human composite tissue allotransplantation, clinical outcomes have demonstrated that hand allotransplantation seems to be well tolerated without drastic immunosuppressive drugs. This chapter briefly describes current advances in the field of tolerance to organ transplantation and elaborates suggestions for the reasons why hand transplantations are likely to be immunologically well tolerated by the host.


Human Leukocyte Antigen Human Mesenchymal Stem Cell Tolerance Induction Peripheral Tolerance Allograft Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sprent J, Kishimoto H (2002) The thymus and negative selection. Immunol Rev 185:126–135PubMedCrossRefGoogle Scholar
  2. 2.
    Seddon B, Mason D (2000) The third function of the thymus. Immunol Today 21:95–99PubMedCrossRefGoogle Scholar
  3. 3.
    Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210PubMedCrossRefGoogle Scholar
  4. 4.
    Sharabi Y, Abraham VS, Sykes M, Sachs DH (1992) Mixed allogeneic chimeras prepared by a non-myeloablative regimen: requirement for chimerism to maintain tolerance. Bone Marrow Transplant 9:191–197PubMedGoogle Scholar
  5. 5.
    Ko S, Deiwick A, Jager MD, Dinkel A et al (1999) The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat Med 5:1292–1297PubMedCrossRefGoogle Scholar
  6. 6.
    Wekerle T, Kurtz J, Ito H et al (2000) Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 6:464–469PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtz J, Wekerle T, Sykes M (2004) Tolerance in mixed chimerism — a role for regulatory cells? Trends Immunol 25:518–523PubMedCrossRefGoogle Scholar
  8. 8.
    Kanamoto A, Maki T (2004) Chimeric donor cells play an active role in both induction and maintenance phases of transplantation tolerance induced by mixed chimerism. J Immunol 172:1444–1448PubMedGoogle Scholar
  9. 9.
    Taniguchi H, Abe M, Shirai T et al (1995) Reconstitution ratio is critical for alloreactive T cell deletion and skin graft survival in mixed bone marrow chimeras. J Immunol 155:5631–5636PubMedGoogle Scholar
  10. 10.
    Wood KJ (2003) Passenger leukocytes and microchimerism: what role in tolerance induction? Transplantation 75:17S–20SPubMedCrossRefGoogle Scholar
  11. 11.
    Anderson CC, Matzinger P (2001) Immunity or tolerance: opposite outcomes of microchimerism from skin grafts. Nat Med 7:80–87PubMedCrossRefGoogle Scholar
  12. 12.
    Duperrier K, Farre A, Bienvenu J et al (2002) Cyclosporin A inhibits dendritic cell maturation promoted by TNF-alpha or LPS but not by double-stranded RNA or CD40L. J Leukoc Biol 72:953–961PubMedGoogle Scholar
  13. 13.
    Abe M, Thomson AW (2003) Influence of immunosuppressive drugs on dendritic cells. Transpl Immunol 11:357–365PubMedCrossRefGoogle Scholar
  14. 14.
    Lagaraine C, Lebranchu Y (2003) Effects of immunosuppressive drugs on dendritic cells and tolerance induction. Transplantation 75[Suppl]:37–42CrossRefGoogle Scholar
  15. 15.
    Cobbold SP, Nolan KF, Graca L et al (2003) Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 196:109–124PubMedCrossRefGoogle Scholar
  16. 16.
    Bacchetta R, Gregori S, Roncarolo MG (2005) CD4+ regulatory T cells:mechanisms of induction and effector function. Autoimmun Rev 4:491–496PubMedCrossRefGoogle Scholar
  17. 17.
    Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  18. 18.
    Itoh M, Takahashi T, Sakaguchi N et al (1999) Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326PubMedGoogle Scholar
  19. 19.
    Zelenika D, Adams E, Humm S et al (2001) The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 182:164–179PubMedCrossRefGoogle Scholar
  20. 20.
    Graca L, Honey K, Adams E et al (2000) Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. J Immunol 165:4783–4786PubMedGoogle Scholar
  21. 21.
    Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210PubMedCrossRefGoogle Scholar
  22. 22.
    Jonuleit H, Adema G, Schmitt E (2003) Immune regulation by regulatory T cells: implications for transplantation. Transpl Immunol 11:267–276PubMedCrossRefGoogle Scholar
  23. 23.
    Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195:1641–1646PubMedCrossRefGoogle Scholar
  24. 24.
    Liang S, Alard P, Zhao Y et al (2005) Conversion of CD4+ CD25-cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201:127–137PubMedCrossRefGoogle Scholar
  25. 25.
    Cortesini R (2003) Regulatory T cells and dendritic cells in transplantation medicine. Transpl Immunol 11:231–233PubMedCrossRefGoogle Scholar
  26. 26.
    Kanitakis J, Petruzzo P, Jullien D et al (2005) Pathological score for the evaluation of allograft rejection in human hand (composite tissue) allotransplantation. Eur J Dermatol 15:235–238PubMedGoogle Scholar
  27. 27.
    Petruzzo P, Revillard JP, Kanitakis J et al (2003) First conventional immunosuppressive protocol. Clin Transplant 17:455–460PubMedCrossRefGoogle Scholar
  28. 28.
    Sanchez-Fueyo A, Sandner S, Habicht A et al (2006) Specificity of CD4+CD25+ regulatory T cell function in alloimmunity. J Immunol 176:329–334PubMedGoogle Scholar
  29. 29.
    Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729PubMedCrossRefGoogle Scholar
  30. 30.
    Angoulvant D, Clerc A, Benchalal S et al (2004) Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology 41:469–476PubMedGoogle Scholar
  31. 31.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedCrossRefGoogle Scholar
  32. 32.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Assia Eljaafari
    • 1
  • Palmina Petruzzo
    • 2
    • 3
  • Xavier Martin
    • 2
  • Jean-Michel Dubernard
    • 2
  1. 1.Mixed Unit of Immunogenomics, BioMerieux/HCL and Unit of Transplantation Surgery Department of DermatologyÉdouard Herriot HospitalLyonFrance
  2. 2.Department of TransplantationÉdouard Herriot HospitalLyonFrance
  3. 3.Department of SurgeryUniversity of CagliariItaly

Personalised recommendations