Skip to main content

The Sensor Glove in Preoperative Conditioning and Postoperative Rehabilitation

  • Chapter
Hand Transplantation

Abstract

Hand transplantation represents a unique situation from the biological, clinical, psychological and cognitive point of view. The transplanted hand has to be accepted by the recipient, and the recipient’s nerve fibres have to reinnervate nervous pathways, muscles and sensory receptor organs of the donor’s hand. Various factors influencing the nerve regeneration process in such a situation has been discussed elsewhere [1]. However, the sensory motor functions of the transplanted hand are dependent not only on peripheral events in the transplanted body part, but establishment of central projections of the transplanted hand in the motor as well as somatosensory cortex is essential for the functional outcome. The original amputation injury has — in itself — induced extensive cortical reorganisations in the amputee’s brain with disappearance of the hand representation, and functional recovery in the transplanted hand requires reestablishment of hand projectional areas in the motor and somatosensory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahlin LB, Lundborg G (2006) From silent neuroma to reactivation of axonal growth: how a peripheral nerve can start to regenerate into a transplanted hand. In: Lanzetta M, Dubernard JM (eds) Hand Transplantation. Springer Berlin Heidelberg New York

    Google Scholar 

  2. Merzenich MM, Kaas JH, Sur M et al (1978) Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “S1” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181:41–7

    Article  PubMed  CAS  Google Scholar 

  3. Merzenich MM, Nelson RJ, Kaas JH et al (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258:281–297

    Article  PubMed  CAS  Google Scholar 

  4. Merzenich MM, Jenkins WM (1993) Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 6:89–104

    PubMed  CAS  Google Scholar 

  5. Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res 44:107–112

    CAS  Google Scholar 

  6. Penfield W, Boldrey E (1937) Somatic motor and sensory representations in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  7. Hansson T, Brismar T (1999) Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32

    Article  PubMed  CAS  Google Scholar 

  8. Bodegard A, Ledberg A, Geyer S et al (2000) Object shape differences reflected by somatosensory cortical activation. J Neurosci 20:RC51

    PubMed  CAS  Google Scholar 

  9. Bodegård A, Geyer S, Naito E et al (2000) Somatosensory areas in man activated by moving stimuli. Neuroreport 11:187–191

    Article  PubMed  Google Scholar 

  10. Ehrsson HH, Fagergren A, Jonsson T et al (2000) Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536

    PubMed  CAS  Google Scholar 

  11. Kaas J (1991) Plasticity of sensory and motor maps in adult mammals. Ann Rev Neurosci 14:137–168

    Article  PubMed  CAS  Google Scholar 

  12. Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  PubMed  CAS  Google Scholar 

  13. Wall JT, Xu J, Wang X (2002) Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev 39:181–215

    Article  PubMed  CAS  Google Scholar 

  14. Merzenich MM, Nelson RJ, Stryker MS et al (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224:591–605

    Article  PubMed  CAS  Google Scholar 

  15. Weiss T, Miltner W, Huonker R et al (2000) Rapid functional plasticity of the somatosensory cortex after finger amputation. Exp Brain Res 134:199–203

    Article  PubMed  CAS  Google Scholar 

  16. Code RA, Eslin DE, Juliano SL (1992) Expansion of stimulus-evoked metabolic activity in monkey somatosensory cortex after peripheral denervation. Exp Brain Res 88:341–344

    Article  PubMed  CAS  Google Scholar 

  17. Manger PR, Woods TM, Jones EG (1996) Plasticity of the somatosensory cortical map in macaque monkeys after chronic partial amputation of a digit. Proc R Soc Lond B Biol Sci 263:933–939

    Article  CAS  Google Scholar 

  18. Pons T, Preston E, Garraghty K (1991) Massive cortical reorganization after sensory deafferetiation in adult macaques. Science 252:1857–1860

    Article  PubMed  CAS  Google Scholar 

  19. Kaas JH, Florence SL, Jain N (1999) Subcortical contributions to massive cortical reorganizations. Neuron 22:657–660

    Article  PubMed  CAS  Google Scholar 

  20. Elbert T, Flor H, Birbaumer N et al (1994) Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 5:2593–2597

    Article  PubMed  CAS  Google Scholar 

  21. Ramachandran VS, Stewart M, Rogers-Ramachandran DC (1992) Perceptual correlates of massive cortical reorganization. Neuroreport 3:583–586

    Article  PubMed  CAS  Google Scholar 

  22. Flor H, Elbert T, Wienbruch C et al (1995) Phantomlimb pain as a perceptual correlate of cortical organization following arm amputation. Nature 375:482–484

    Article  PubMed  CAS  Google Scholar 

  23. Borsook D, Becerra L, Fishman S et al (1998) Acute plasticity in the human somatosensory cortex following amputation. Neuroreport 9:1013–1017

    Article  PubMed  CAS  Google Scholar 

  24. Flor H, Elbert T, Muhlnickel W et al (1998) Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res 119:205–212

    Article  PubMed  CAS  Google Scholar 

  25. Knecht S, Henningsen H, Elbert T et al (1995) Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neurosci Lett 201:262–264

    Article  PubMed  CAS  Google Scholar 

  26. Knecht S, Soros P, Gurtler S et al (1998) Phantom sensations following acute pain. Pain 77:209–213

    Article  PubMed  CAS  Google Scholar 

  27. Knecht S, Henningsen H, Hohling C et al (1998) Plasticity of plasticity? Changes in the pattern of perceptual correlates of reorganization after amputation. Brain 121:717–24

    Article  PubMed  Google Scholar 

  28. Birbaumer N, Lutzenberger W, Montoya P et al (1997) Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 17:5503–5508

    PubMed  CAS  Google Scholar 

  29. Agius E, Cochard P (1998) Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis. J Neurosci 18:328–338

    PubMed  CAS  Google Scholar 

  30. Wiberg M, Hazari A, Ljungberg C et al (2003) Sensory recovery after hand reimplantation: a clinical, morphological, and neurophysiological study in humans. Scand J Plast Reconstr Surg Hand Surg 37:163–173

    Article  PubMed  Google Scholar 

  31. Brenneis C, Loscher WN, Egger KE et al (2005) Cortical motor activation patterns following hand transplantation and replantation. J Hand Surg [Br] 30:530–533

    CAS  Google Scholar 

  32. Lundborg G, Björkman A, Larsson EM et al (2005) Cortikal integrering av replanterad hand och osseointegrerad tumprotes-en fMRI studie. Swedish Medical Society Annual Meeting, Stockholm, 30 November to 2 December 2004. [Abstract]

    Google Scholar 

  33. Giraux P, Sirigu A, Schneider F et al (2001) Cortical reorganization in motor cortex after graft of both hands. Nat Neurosci 4:691–692

    Article  PubMed  CAS  Google Scholar 

  34. Lanzetta M, Perani D, Anchisi D et al (2004) Early use of artificial sensibility in hand transplantation. Scan J Plast Reconstr Surg 38:106–111

    Article  Google Scholar 

  35. Rizzolatti G, Fadiga L, Gallese V et al (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141

    Article  PubMed  CAS  Google Scholar 

  36. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  37. Hauk O, Johnsrude I, Pulvermuller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–307

    Article  PubMed  CAS  Google Scholar 

  38. Keysers C, Wicker B, Gazzola V et al (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron 42:335–346

    Article  PubMed  CAS  Google Scholar 

  39. Hansson T, Björkman A, Nylander L et al (2005) Activation of the primary somatosensory cortex during stereoscopic observation of tactile stimulation of the hand. Proceedings, 10th FESSH Congress, Göteborg

    Google Scholar 

  40. Lundborg G (2004) Nerve injury and repair. Regeneration, reconstruction and cortical re-modelling, 2nd Edn. Elsevier, Philadelphia

    Google Scholar 

  41. Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452

    PubMed  CAS  Google Scholar 

  42. Lundborg G, Rosén B, Lindberg S (1999) Hearing as substitution for sensation — a new principle for artificial sensibility. J Hand Surg [Am] 24:219–224

    Article  CAS  Google Scholar 

  43. Lundborg G, Bjorkman A, Hansson T et al (2005) Artificial sensibility of the hand based on cortical audiotactile interaction:A study using functional magnetic resonance imaging. Scand J Plast Reconstr Surg Hand Surg 39:370–372

    Article  PubMed  Google Scholar 

  44. Rosén B, Lundborg G (2003) Early use of artificial sensibility to improve sensory recovery after repair of the median and ulnar nerve. Scand J Plast Reconstr Surg Hand Surg 37:54–57

    PubMed  Google Scholar 

  45. Lundborg G, Rosén B (2003) Enhanced sensory recovery after median nerve repair: Effects of early postoperative artificial sensibility using the sensor glove system. J Hand Surg [Am] 28[Suppl. 1]:38–39

    Google Scholar 

  46. Lanzetta M, Dubernard JM, Owen ER et al (2001) Surgical planning of human hand transplantation. Transplant Proc 33:683

    Article  PubMed  CAS  Google Scholar 

  47. Lanzetta M, Nolli R, Borgonovo A et al (2001) Hand transplantation: ethics, immunosuppression and indications. J Hand Surg [Br] 26:511–516

    CAS  Google Scholar 

  48. Dellon AL (ed) (1981) Sensibility and re-education of sensation in the hand. Williams & Wilkins, Baltimore

    Google Scholar 

  49. Wynn-Parry CB, Salter M (1976) Sensory re-education after median nerve lesions. Hand 8:250–257

    Article  Google Scholar 

  50. Bell-Krotoski J (2002) Sensibility testing with the Semmes-Weinstein monofilament. In: Mackin C, Callahan AD, Skirven TM et al (eds) Rehab of the hand and upper extremity, 5th Edn. Mosby, St. Louis, pp 194–213

    Google Scholar 

  51. American Society for Hand Therapists (ASHT) (1992) Clinical assessment recommendation, 2nd Edn. American Society for Hand Therapists

    Google Scholar 

  52. Rosén B, Lundborg G (1998) A new tactile gnosis instrument in sensibility testing. J Hand Ther 11:251–257

    PubMed  Google Scholar 

  53. Perani D, Brunelli GA, Tettamanti M et al (2001) Remodelling of sensorimotor maps in paraplegia: a functional magnetic resonance imaging study after a surgical nerve transfer. Neurosci Lett 303:62–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Lundborg, G., Rosén, B. (2007). The Sensor Glove in Preoperative Conditioning and Postoperative Rehabilitation. In: Lanzetta, M., Dubernard, JM., Petruzzo, P. (eds) Hand Transplantation. Springer, Milano. https://doi.org/10.1007/978-88-470-0374-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0374-3_43

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0373-6

  • Online ISBN: 978-88-470-0374-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics