Skip to main content

Evolution of the cerebral cortex in amniotes: Anatomical consideration of neuronal types

  • Chapter
Nature at Work: Ongoing Saga of Evolution
  • 1313 Accesses

Abstract

The cerebral cortex is a thin sheet of nervous tissue in the roof of the cerebrum of amniotes. The cerebral cortex of reptiles is divided into four areas viz. medial, dorsomedial, dorsal and lateral cortices having different neuronal components. The areas of the hippocampal complex of birds are subdivided into a dorsal parahippocampal region and a ventral hippocampus. The different neuronal types divide the hippocampus of birds into five fields viz. medial and lateral hippocampus, parahippocampal area, central field of parahippocampal area and crescent field. The cerebral cortex of mammals is a complex structure. The neocortex of mammals shows the typical six layered structure in the frontal, parietal, temporal and occipital lobes having typical pyramidal and nonpyramidal neurons which show phenotypic variations. Neuronal types in cerebral cortex of reptiles, birds and mammals have been compared to determine homologous structures. The possible homologous structures have been mentioned in final comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwerdtfeger WK (1984) Structure and fiber connections of the hippocampus: A comparative study. Adv Anat Embryol Cell Biol 83:1–74

    PubMed  CAS  Google Scholar 

  2. Ramón y Cajal S (1911) Histologie du Systeme Nerveux de l’Homme et des Vertebres. A Maloine, Paris

    Google Scholar 

  3. Rose M (1927) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des Allocortex bei Teir und Mensch. J Psychol Neurol 34:261–401

    Google Scholar 

  4. Lorente de Nó R (1934) Studies on the structure of the cerbral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  5. Ebbesson SOE, Voneida TJ (1969) The cytoarchitecture of pallium in the tegu lizard. Brain Behav Evol 2:431–466

    Google Scholar 

  6. Ulinski PS (1974) Cytoarchitecture of cerebral cortex in snakes. J Comp Neurol 158:243–266

    PubMed  CAS  Google Scholar 

  7. Ulinski PS (1977) Intrinsic organization of snake medial cortex: An electron microscopic and Golgi study. J Morphol 152(2):247–279

    PubMed  CAS  Google Scholar 

  8. Smeets WJAJ, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19

    PubMed  CAS  Google Scholar 

  9. Luis de la Iglesia JA, Lopez-Garcia C (1997) AGolgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:528–564

    Google Scholar 

  10. Maurya RC, Srivastava UC (2006) Morphological diversity of the medial cortex neurons in the common Indian wall lizard, Hemidactylus flaviviridis. Natl Acad Sci Lett 29:375–383

    Google Scholar 

  11. Srivastava UC, Maurya RC, Shishodiya U (2007b) Cytoarchitecture and morphology of the different neuronal types of the cerebral cortex of an Indian lizard (Mabouia carinata). Proc Nat Acad Sci India 77:331–347

    Google Scholar 

  12. Srivastava UC, Maurya RC, Chand P (2009) Cyto-architecture and neuronal types of the dorsomedial cerebral cortex of the common Indian wall lizard (Hemidactylus flaviviridis). Arch Ital Biol 147:21–35

    PubMed  CAS  Google Scholar 

  13. Abhinav, Srivastava UC (2006) Neuroanatomy of cerebral cortex of an Indian lizard Mabouia carinata. J Appl Biosci 32(2):157–160

    Google Scholar 

  14. Crosby EC (1917) Forebrain of Alligator mississippiensis. J Comp Neurol 271:325–402

    Google Scholar 

  15. Platel R, Beckers HJA, Nieuwenhuys R (1973) Les champs corticaux chez Testudo hermanii (Reptile chelnien) et chez Caiman crocodylus (Reptile crocodilian). Acta Morph Neerl Scand 11:121–150

    CAS  Google Scholar 

  16. Beckers HJA, Platel R, Nieuwenhuys R (1971) Les aires corticales de quelques reptiles squamates (Lacerta viridian, Chamaeleo lateralis, Monopeltis guentheri). Acta Morphol Neerl Scand 9:337–364

    Google Scholar 

  17. Northcutt RG (1970) The telencephalon of the western painted turtle (Chrysemys picta belli). Illinois Biological Monographs Urbana: University of Illinois Press

    Google Scholar 

  18. Lopez-Garcia C, Molowny A, Nacher J, Ponsoda X, Sancho-Bielsa F, Alonso-Llosa G (2002) The lizard cerebral cortex as a model to study neuronal regeneration. An Acad Bras Cienc 74(1):85–104

    PubMed  Google Scholar 

  19. Colonnier M (1964) The tangential organization of the visual cortex. J Comp Neurol 98:327–344

    CAS  Google Scholar 

  20. Berbel PJ, Martinez-Guijarro FJ, Lopez-Garcia C (1987) Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pityusensis. A Golgi study. J Morphol 194:276–286

    Google Scholar 

  21. Wouterlood FG (1981) The structure of the mediodorsal cerebral cortex in the lizard Agama agama: A Golgi study. J Comp Neurol 196(3):443–458

    PubMed  CAS  Google Scholar 

  22. Ulinski PS (1979) Intrinsic organization of snake dorsomedial cortex: An electron microscopic and Golgi study. J Morphol 161(2):185–210

    PubMed  CAS  Google Scholar 

  23. Guirado S, Davila JC, De la Calle A, Marin-Giron F (1987) A Golgi study of the dorsal cortex in the lizard Psammodromus algirus. J Morphol 194:265–274

    Google Scholar 

  24. Ulinski PS, Rainey WT (1980) Intrinsic organization of snake lateral cortex. J Morphol 165:85–116

    Google Scholar 

  25. Maurya RC (2009) Identification and classification of different types of neurons of the cerebral Cortex of the common Indian wall lizard, Hemidactylus flaviviridis. D. Phil Thesis, University of Allahabad, India

    Google Scholar 

  26. Ulinski PS (1976) Structure of anterior dorsal ventricular ridge in snakes. J Morphol 148:1–21

    PubMed  CAS  Google Scholar 

  27. Martinez Guijarro FJ, Berbel PJ, Molowny A, Lopez Garcia C (1984) Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta). Anat Embryol (Berl.) 170:321–326

    CAS  Google Scholar 

  28. Berbel PJ (1988) Cytology of medial and dorsomedial cortices in lizards: A Golgi study. In: The Forebrain of Reptile. Current Concept on Structure and Function. Schwerdtfeger WK, Smeets W (Eds.), Karger, Basel

    Google Scholar 

  29. Luis de la Iglesia JA, Lopez-Garcia C (1997) A Golgi study of the short axon interneurons of the cell layer and inner plexiform layer of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:565–598

    Google Scholar 

  30. Molnar Z, Metin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006) Comparative aspects of cerebral cortical development. Eur J Neurosci 23:921–934

    PubMed  Google Scholar 

  31. Ramón y Cajal P (1896) Estructura del encefalo del camaleon. Rev Trimest Micrograf 1:46–82

    Google Scholar 

  32. Ramón y Cajal S (1904) Estructura comparada de la corteza cerebral. In: Textura del Sistema Nervioso del Hombre y de los Vertebrados. Vol. II, Imprenta y libreria de Nicolas Moya, Madrid

    Google Scholar 

  33. Minelli G (1966) Architettura delle corteccie di alcuni Rettili (Lacerta muralis, Lacerta viridis, Testudo graeca, Crocodilus acutus). Arch Zool Ital 51:543–573

    Google Scholar 

  34. Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana. J Comp Neurol 130:109–147

    PubMed  CAS  Google Scholar 

  35. Regidor J, Martin-Trujillo JM., Lopez-Garcia C, Martin-Giron F (1974) Estudio citoarquitectonico de la carteza cerebral de reptiles. II. Tipologia dendritica y destribucion neuronal en areas corticales de Lacerta galloti. Trab Inst Cajal Invest Biol 66:1–32

    PubMed  CAS  Google Scholar 

  36. Shen JM, Kriegstein AR (1986) Turtle hippocampal cortex contains distinct cell types, burst-firing neurons, and an epileptogenic subfield. J Neurophysiol 56:1626–1649

    PubMed  CAS  Google Scholar 

  37. Garcia Verdugo JM, Lopez Garcia C, Berbel Navarro P, Soriano Garcia E (1983) Ultrastructure of neuronal cell bodies in dorso-medial cortex of Lacerta galloti. J Hirnforsch 24(3):307–314

    PubMed  CAS  Google Scholar 

  38. Garcia-Verdugo JM, Berbel Navarro P, Regidor Garcia J, Lopez Garcia C (1984) Ultrastructure of neuronal cell bodies in the medial cortex of Lacerta galloti. J Hirnforsch 25:187–196

    PubMed  CAS  Google Scholar 

  39. Montagnese CM, Krebs JR, Meyer G (1996) The dorsomedial and dorsolateral forebrain of the zebra finch, Taeniopygia guttata: A Golgi study. Cell Tissue Res 283:263–282

    PubMed  CAS  Google Scholar 

  40. Casini G, Fontanesi G, Bingman VP, Jones TJ, Garliardo A, Ioale P, Bagnoli P (1997) The neuroethology of cognitive maps: contributions from research on the hippocampus and homing pigeon navigation. Arch Ital Biol 135:73–92

    PubMed  CAS  Google Scholar 

  41. Tömböl T, Davies DC, Németh A, Sebestény T, Alpár A (2000) A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anat Embryol 201:85–101

    PubMed  Google Scholar 

  42. Tömböl T, Davies DC, Németh A, Alpár A, Sebestény T (2000) A Golgi and a combined Golgi/GABA immunogold study of local circuit neurons in the homing pigeon hippocampus. Anat Embryol 201:181–196

    PubMed  Google Scholar 

  43. Atoji Y, Yamamoto Y, Suzuki Y (2001) Distribution of NADPH diaphorase-containing neurons in pigeon central nervous system. J Chem Neuroanat 21:1–22

    PubMed  CAS  Google Scholar 

  44. Falougy H, Benuska J (2006) History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation. Bratisl Lek Listy 107:93–108

    Google Scholar 

  45. Srivastava UC, Chand P, Maurya RC (2007) Cytoarchitectonic organization and morphology of the cells of hippocampal complex in strawberry finch (Estrilda amandava). Cell Mol Biol 53:103–120

    PubMed  CAS  Google Scholar 

  46. Atoji Y, Wild JM (2005) Afferent and efferent connections of the dorsolateral corticoid area and a comparison with connections of the temporo-parieto-occipital area in the pigeon (Columba livia). J Comp Neurol 485:165–182

    PubMed  Google Scholar 

  47. Bingman VP, Ioale P, Casini G, Bagnoli P (1990) The avian hippocampus: Evidence for a role in the development of homing pigeon navigational map. Behav Neurosci 104:906–911

    PubMed  CAS  Google Scholar 

  48. Sherry DF, Jacobs LF, Daulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15:298–303

    PubMed  CAS  Google Scholar 

  49. Hampton RR, Shettleworth SJ (1996) Hippocampal lesions impair memory for location but not for color in passerine birds. Behav Neurosci 110:831–835

    PubMed  CAS  Google Scholar 

  50. Patel SN, Clayton NS, Krebs JR (1997) Spatial learning induces neurogenesis in the avian brain. Behav Brain Res 89:115–128

    PubMed  CAS  Google Scholar 

  51. Strasser R, Bingman VP (1997) Goal recognition and hippocampal formation in the homing pigeon (Columba livia). Behav Neurosci 111:1245–1256

    PubMed  CAS  Google Scholar 

  52. Volman SF, Grubb TC, Jr Schuett KC (1997) Relative hippocampal volume in relation to food-storing behaviour in four species of woodpeckers. Brain Behav Evol 49:110–120

    PubMed  CAS  Google Scholar 

  53. Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL (1989) Hippocampal specialization of food-storing birds. Proc Natl Acad Sci USA 86:1388–1392

    PubMed  CAS  Google Scholar 

  54. Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317

    PubMed  CAS  Google Scholar 

  55. Sherry DF, Vaccarino AL (1989) Hippocampus and memory for food caches in black-capped chickadees. Behav Neurosci 103:308–318

    Google Scholar 

  56. Srivastava UC, Chand P, Maurya RC (2009) Neuronal classes in the corticoid complex of the telencephalon of the strawberry finch, Estrilda amandava. Cell Tissue Res 336:393–409

    PubMed  CAS  Google Scholar 

  57. Mollá R, Rodriguez J, Calvet S, Garcia-Verdugo JM (1986) Neuronal types of the cerebral cortex of the adult chicken, Gallus gallus. A Golgi study. J Hirnforsch 27:381–390

    PubMed  Google Scholar 

  58. Watanabe M, Ito H, Masi H (1983) Cytoarchitecture and visual receptive neurons in the wulst of the Japanese quail (Coturnix coturnix japonica). J Comp Neurol 213:188–198

    PubMed  CAS  Google Scholar 

  59. Tömböl T, Maglóczky Z (1990) Cytoarchitecture of chicken wulst: A Golgi study in cell types and their maturation after hatching. Acta Morphol Hung 38:35–53

    PubMed  Google Scholar 

  60. Chand P (2009) Neuronal classes in the Central Nervous System of a bird, Estrilda amandava. D. Phil Thesis, University of Allahabad, India

    Google Scholar 

  61. Ferrer I, Fabrigues I, Condom E (1986) A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of rodentia, lagomorpha, insectivora and chiroptera. J Anat 145:217–234

    PubMed  CAS  Google Scholar 

  62. Ferrer I, Fabrigues I, Condom E (1986) A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of carnivora, artiodactyla and primates. J Anat 146:87–104

    PubMed  CAS  Google Scholar 

  63. Hof PR, Glezer II, Condé F, Flagg R, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of calcium-binding proteins paravalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    Google Scholar 

  64. Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: A comparative study in human and monkey. J Neurosci 21:1–5

    Google Scholar 

  65. Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–224

    PubMed  CAS  Google Scholar 

  66. Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96:5268–5273

    PubMed  CAS  Google Scholar 

  67. DeFelipe J, Alonso-Nanclares L, Jon I, Arellano JI (2002) Microstructure of the neocortex: Comparative aspects. J Neurocytol 31:299–316

    PubMed  Google Scholar 

  68. Ballesteros-Yáñez I, Muñoz A, Contreras J, Gonzalez J, Rodriguez-Viega E, Defelipe J (2005) The double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 486:344–360

    Google Scholar 

  69. Sherwood CC, Lee PWH, Rivara CB, Holloway RL, Gilissen EPE, Simmons, RMT, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44

    PubMed  Google Scholar 

  70. Elston GN, Tweedale R, Rosa MGP (1999) Cellular heterogeneity in cerebral cortex, A study of the morphology of pyramidal neurones in visual areas of marmoset monkey. J Comp Neurol 415:33–51

    PubMed  CAS  Google Scholar 

  71. Elston GN (2005) A study of pyramidal cell structure in the cingulated cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb Cortex 15:64–73

    PubMed  Google Scholar 

  72. Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7:432–452

    PubMed  CAS  Google Scholar 

  73. Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R (2002) Cortical area and species differences in dendritic spine morphology. J Neurocytol 31:337–346

    PubMed  Google Scholar 

  74. Elston GN, DeFelipe J (2002) Spine distribution in cortical pyramidal cells: A common organizational principle across species. Prog Brain Res 136:109–133

    PubMed  Google Scholar 

  75. Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000) Neurochemical and cellular specializations in mammalian neocortex reflect phylogenetic relationships: Evidence from primates, cetaceans and artiodactyls. Brain Behav Evol 55:300–310

    PubMed  CAS  Google Scholar 

  76. Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Cerebral Cortex, Vol. I. Cellular Components of the Cerebral Cortex. Peters A, Jones EG (Eds.), Plenum Press, New York

    Google Scholar 

  77. Nieuwenhuys R (1994) The Neocortex, an overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190:307–337

    PubMed  CAS  Google Scholar 

  78. Hassiotis M, Ashwell KW (2003) Neuronal classes in the isocortex of a monotreme, the Australian echidna (Tachyglossus aculeatus). Brain Behav Evol 61:6–27

    PubMed  CAS  Google Scholar 

  79. Economo Von C (1927) Zellaufbau der Gross hirnrinde des Menschen. Verlag Von Juliur Springer, Berlin

    Google Scholar 

  80. Mitra NL (1955) Quantitative analysis of cell types in mammalian neocortex. J Anat 89:467–483

    PubMed  CAS  Google Scholar 

  81. Adrianov OS, Mering TA (1959) In: Atlas of the Canine Brain. Domino EF (Ed.)Government Publication of Medical Literature, Moscow

    Google Scholar 

  82. Tunturi AR (1971) Classification of neurons in the ectosylvian auditory cortex of the Dog. J Comp Neurol 142:153–166

    PubMed  CAS  Google Scholar 

  83. Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163:81–106

    PubMed  CAS  Google Scholar 

  84. Lund JS, Booth RG, Lund RD (1977) Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity. J Comp Neurol 164:1 7-304

    Google Scholar 

  85. Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat: A comparison with area 17 of macaque monkey. J Comp Neurol 184:599–618

    PubMed  CAS  Google Scholar 

  86. Garey LJ, Saini KD (1981) Golgi studies of the normal development of neurons in the lateral geniculate nucleus of the monkey. Exp Brain Res 44:117–128

    PubMed  CAS  Google Scholar 

  87. Garey LJ, Winkelmann E, Brauer K (1985) Golgi and Nissl studies of the visual cortex of the Bottlenose Dolphin. J Comp Neurol 240:305–321

    PubMed  CAS  Google Scholar 

  88. Ferrer I (1986) Golgi study of the isocortex in an insectivore: The common European mole (Talpa europea). Brain Behav Evol 29:105–114

    PubMed  CAS  Google Scholar 

  89. Fitzpatrick DC, Henson OW (1994) Cell types in mustached bat auditory cortex. Brain Behav Evol 43:79–91

    PubMed  CAS  Google Scholar 

  90. Tyler CJ, Dunlop SA, Lund RD, Harman AM, Dann JF, Beazley LD, Lund JS (1998) Anatomical comparison of the macaque and marsupial visual cortex: Common features that may reflect retention of essential cortical elements. J Comp Neurol 400:449–468

    PubMed  CAS  Google Scholar 

  91. Hof PR, Sherwood CC (2005) Morphological neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287A:1153–1163

    CAS  Google Scholar 

  92. Molowny A, Lopez-Garcia C (1978) Estudio citoarquitectonico de la corteza cerebral de reptiles. III. Localizacion histoquimica de metales pesados y definition de subregiones Timm-positive en la corteza de Lacerta galloti, Chalcides sp. y Tarentola mauritanica. Trab Inst Cajal Invest 70:55–74

    Google Scholar 

  93. Lopez-Garcia C, Molowny A, Martinez-Guijarro FJ, Blasco-Ibanez JM, Luis de la Iglesia JA, Bernabeu A, Garcia-Verdugo JM (1992) Lesion and regeneration in the medial cerebral cortex of lizards. Histol histopath 7:725–746

    CAS  Google Scholar 

  94. Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus: A light microscopic and Golgi study. J Anat 133:181–195

    PubMed  CAS  Google Scholar 

  95. Wiliams RS, Matthysse S (1983) Morphometric analysis of granule cell dendrites in the mouse dentate gyrus. J Comp Neurol 215:154–164

    Google Scholar 

  96. Marti-Subirana A, Soriano E, Garcia-Verdugo JM (1986) Morphological aspects of the ectopic granule-like cellular population in the albino rat hippocampal formation: A Golgi study. J Anat 144:31–47

    PubMed  CAS  Google Scholar 

  97. Lubbers K, Frotscher M (1987) Fine structures and synaptic connections of identified neurons in the rat fascia dentate. Anat Embryol 177:1–14

    PubMed  CAS  Google Scholar 

  98. Ramón y Cajal S (1904b) Focus olfativos cuaternarios o asta de Ammon y fascia dentata. In: Textura del Sistema Nervioso del Hombre y de los Vertebrados. Vol. II, Imprenta y libreria de Nicolas Moya, Madrid

    Google Scholar 

  99. Stensaas LJ (1968) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. VI. Ninety millimeter stage, cortical differentiation. J Comp Neurol 132:93–108

    PubMed  CAS  Google Scholar 

  100. Duffy CJ, Rakic P (1983) Differentiation of granule cell dendrites in the dentate gyrus of the rhesus monkey: A quantitative Golgi study. J Comp Neurol 214:224–237

    PubMed  CAS  Google Scholar 

  101. Seress L, Frotscher M (1990) Morphological variability is a characteristic feature of granule cells in the primate fascia dentate: A combined Golgi/electron microscope study. J Comp Neurol 293:253

    PubMed  CAS  Google Scholar 

  102. Al-Hussein S, Al-Ali S (1995) A Golgi study of cell types in the dentate gyrus of the adult human brain. Cell Mol Neurobiol 15:207–220

    Google Scholar 

  103. Hartmann D, Frotscher M, Sievers J, Pehlemann FW (1989) Altered development of the dentate gyrus after neonatal destruction of meningeal cells: Analysis of fiber connections and cell morphology. In: Dynamics and Plasticity in Neuronal Systems. Elsner N, Singer W (Eds.), Thieme Verlag, New York

    Google Scholar 

  104. Heimrich B, Frotscher M (1991) Differentiation of dentate granule cells in slice cultures of rat hippocampus: A Golgi/electron microscopic study. Brain Res 538:263–268

    PubMed  CAS  Google Scholar 

  105. Buhl EH, Dann JF (1990) Basal dendrites are a regular feature of hippocampal granule cells in flying fox hippocampus. Neurosci Lett 116:263–268

    PubMed  CAS  Google Scholar 

  106. Seress L, Mrzljak L (1987) Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res 405:169–174

    PubMed  CAS  Google Scholar 

  107. Ulinski PS (1990) The cerebral cortex of reptiles. In: Cerebral Cortex. Vol. 8A. Comparative Structure and Evolution of Cerebral Cortex. Jones EG, Peters A (Eds.), Part I. Plenum Press, New York

    Google Scholar 

  108. Casini G, Bingman VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-Proline. J Comp Neurol 245:454–470

    PubMed  CAS  Google Scholar 

  109. Faber H, Braun K, Zuschratter W, Scheich H (1989) System-specific distribution of zinc in the chick brain. A light and electron-microscopic study using the Timm method. Cell Tissue Res 258:247–257

    PubMed  CAS  Google Scholar 

  110. Montagnese CM, Geneser FA, Krebs JR (1993) Histochemical distribution of zinc in the brain of zebra finch (Taeniopygia guttata). Anat Embryol 188:173–187

    PubMed  CAS  Google Scholar 

  111. Lohman AHM, Mentink GM (1972) Some cortical connections of the tegu lizard (Tupinambia teguixin). Brain Res 45:325–344

    PubMed  CAS  Google Scholar 

  112. Guirado S, De La Calle A, Gutierrez A, Davila JC (1989) Serotonin innervation of the cerebral cortex in lizards. Brain Res 488:213–220

    PubMed  CAS  Google Scholar 

  113. Bruce LL, Butler AB (1984) Telencephalic connections in lizards. I. Projections to cortex. J Comp Neurol 229:585–601

    PubMed  CAS  Google Scholar 

  114. Hoogland PV, Vermeulen-Van Der Zee E (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 285:289–303

    PubMed  CAS  Google Scholar 

  115. Bruce LL, Butler AB (1984b) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J Comp Neurol 229:602–615

    PubMed  CAS  Google Scholar 

  116. Olucha FE, Martinez-Garcia F, Poch L, Schwerdtfeger WK, Lopez-Garcia C (1988) Projections from the medial cortex in the brain of lizards: Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. J Comp Neurol 276:469–480

    PubMed  CAS  Google Scholar 

  117. Martinez-Guijarro FJ, Desfilis E, Lopez-Garcia C (1990) Organization of the dorsomedial cortex in the lizard Podarcis hispanica. In: The forebrain in non-mammals. New aspects of structure and development. Schwerdtfeger WK, Germroth P (Eds.), Springer-Verlag, Berlin

    Google Scholar 

  118. Lopez-Garcia C, Martinez-Guijarro FJ (1988) Neurons in the medial cortex gives rise to Timm-positive boutons in the cerebral cortex of lizards. Brain Res 463:207–217

    Google Scholar 

  119. Lacey DJ (1978) The organization of the hippocampus of the Fence lizard: A light microscopic study. J Comp Neurol 182:247–264

    PubMed  CAS  Google Scholar 

  120. Guirado S, Real MA, Padial J, Andreu MJ, Davila JC (1998) Cholicystokinin innervation of the cerebral cortex in a reptile, the lizard Psammodromus algirus. Brain Behav Evol 51:100–112

    PubMed  CAS  Google Scholar 

  121. Ten Donkelaar HJ (1998) Reptiles. In: The central nervous system of vertebrates. Vol. 2. Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (Eds.), Springer-Verlag, Berlin

    Google Scholar 

  122. Reiner A (1993) Neurotransmitter organization and connections of turtle cortex: Implications for the evolution of mammalian brain. Development 125:3719–3729

    Google Scholar 

  123. Powers AS (1990) Brain mechanisms of learning in reptiles. In: Neurobiology of comparative cognition. Kesner RP, Olton DS (Eds.), Erlbaum: Hillsdale NJ

    Google Scholar 

  124. Reiner A (1991) A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex of reptiles with those present in the isocortex of mammals. Brain Behav Evol 38:53–91

    PubMed  CAS  Google Scholar 

  125. Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    PubMed  CAS  Google Scholar 

  126. Butler AB (1994) The evolution of the dorsal pallium in the telencephalon of amniotes: Cladistic analysis and a new hypothesis. Brain Res Rev 19:66–101

    PubMed  CAS  Google Scholar 

  127. Tömböl T (1995) Golgi structure of telencephalon of the chicken. Abaevo, Budapest

    Google Scholar 

  128. Karten HJ, Hodos W, Nauta WJH, Revzin AM (1973) Neural connections of the ‘visual wulst’ of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–277

    PubMed  CAS  Google Scholar 

  129. Shimizu T, Cox K, Karten HJ (1995) Intratelencephalic projections of the visual Wulst in pigeons (Columba livia). J Comp Neurol 359:551–572

    PubMed  CAS  Google Scholar 

  130. Veenman CL, Wild JM, Reiner A (1995) Organization of the avian ‘corticostriatal’ projection system: A retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354:87–126

    PubMed  CAS  Google Scholar 

  131. Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12

    PubMed  CAS  Google Scholar 

  132. Peters A, Fairen A (1978) Smooth and sparsely spined stellate cells in the visual cortex of the rat: A study using a combined Golgi-electron microscope technique. J Comp Neurol 181:129–172

    PubMed  CAS  Google Scholar 

  133. Simons DJ, Woolsey TA (1984) Morphology of Golgi-Cox impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230:119–132

    PubMed  CAS  Google Scholar 

  134. Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–267

    PubMed  CAS  Google Scholar 

  135. Szentágothai J (1975) The ‘module-concept’ in cerebral cortex architecture. Brain Res 95:475–496

    PubMed  Google Scholar 

  136. Somogyi P (1977) A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res 136:345–350

    PubMed  CAS  Google Scholar 

  137. Somogyi P (1979) An interneuron making synapses specifically on the axon initial segment of pyramidal cells in the cerebral cortex of the cat. J Physiol (London) 296:18–19

    Google Scholar 

  138. Fairén A, Valverde F (1979) Specific thalmo-cortical afferents and their presumptive targets in the visual cortex: A golgi study. In: Development and Chemical specificity of Neurons. Vol 51. Cuénod M, Kreutzberg GW, Bloom FE (Eds.), Progress in Brain Research

    Google Scholar 

  139. Fairén A, Valverde F (1980) A specialized type of neuron in the visual cortex of cat: A Golgi and electron microscope study of chandelier cells. J Comp Neurol 194:761–779

    PubMed  Google Scholar 

  140. Tömböl T (1976) Golgi analysis of the internal layers (V–VI) of the cat visual cortex. Exp Brain Res Suppl 1:292–295

    Google Scholar 

  141. Tömböl T (1978) Some Golgi data on visual cortex of the rhesus monkey. Acta Morphol Acad Sci Hung 26:115–138

    PubMed  Google Scholar 

  142. Tömböl T (1978) Comparative data on the Golgi architecture of interneurons of different cortical areas in cat and rabbit, In: Architectonics of the cerebral cortex. Brazier MAB, Petsche H (Eds.), Raven Press, New Yark

    Google Scholar 

  143. Peters A, Regidor J (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203:685–716

    PubMed  CAS  Google Scholar 

  144. Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neurosci 7:2577–2607

    CAS  Google Scholar 

  145. Valverde F (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus). In: Ramóny Cajal’s Contribution to the Neurosciences. Grisolía S, Guerri C, Samson F, Norton S, Reinoso-Suárez F (Eds.), Elsevier, Amsterdam

    Google Scholar 

  146. Fairén A, De Felipe A J, Regidor J (1984) Non-pyramidal neurons. General account. In: Cerebral Cortex, Cellular components of the Cerebral Cortex. Vol. 1. Peters A, Jones EG (Eds.), Planum Press, New York

    Google Scholar 

  147. Lorente de Nó R (1938) Analysis of the activity of the chains of internuncial neurons. J Neurophysiol 1:207–244

    Google Scholar 

  148. Peters A, Saint Marie RL (1984) Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In: Cerebral Cortex. Vol. 1, Peters A, Jones EG (Eds.), Planum Press, New York

    Google Scholar 

  149. Nauta WHJ, Karten HJ (1970) A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: The Neurosciences, Second Study Program.. Heimer L, van Hoesen GW, Trimble M, Zahm SD (Eds.), Schmitt Rockefeller: University Press

    Google Scholar 

  150. Karten HJ (1991) Homology and evolutionary origins of the ‘neocortex’. Brain Behav Evol 38:264–272

    PubMed  CAS  Google Scholar 

  151. Karten HJ, Shimizu T (1989) The origins of neocortex: Connections and lamination as distinct events in evolution. J Cogn Neurosci 1:291–301

    Google Scholar 

  152. Reiner A, Karten HJ (1983) The laminar source of efferent projections from the avian Wulst. Brain Res 275:349–354

    PubMed  CAS  Google Scholar 

  153. Wild JM (1992) Direct and indirect ‘cortico’-rubral andrubro-cerebellar cortical projections in the pigeon. J Comp Neurol 326:623–636

    PubMed  CAS  Google Scholar 

  154. Wild JM, Williams MN (2000) Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J Comp Neurol 416:429–450

    PubMed  CAS  Google Scholar 

  155. Lohman AHM, Van Woerden-Verkley I (1978) Ascending connections to the forebrain in the tegu lizard. J Comp Neurol 182:555–594

    PubMed  CAS  Google Scholar 

  156. Neary TJ, Wilczynski W (1977) Ascending thalamic projections from the obex region in ranid frogs. Brain Res 138:529–533

    PubMed  CAS  Google Scholar 

  157. Hall WC, Ebner FF (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–122

    PubMed  CAS  Google Scholar 

  158. Kenigfest N, Martinez-Marcos A, Belekhova M, Font C, Lanuza, E, Desfilis E, Martinez-Garcia F (1997) A lacertilian dorsal retinorecipient thalamus: A re-investigation in the old-world lizard Podarcis hispanica. Brain Behav Evol 50:313–334

    PubMed  CAS  Google Scholar 

  159. Karten HJ (1997) Evolutionary developmental biology meets the brain: The origins of mammalian neocortex. Proc Natl Acad Sci (USA) 94:2800–2804

    CAS  Google Scholar 

  160. Shimizu T, Karten HJ (1993) Multiple origins of neocortex: Contributions of the dorsal ventricular ridge. In: Brain and Behavior in Birds. Zeigler HP, Bischof JH (Eds.), MIT Press

    Google Scholar 

  161. Wild JM (1997) The avian somatosensory system: The pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res 759:122–134

    PubMed  CAS  Google Scholar 

  162. Hamam BN, Kennedy TE, Alonso A, Amaral DG (2000) Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J Comp Neurol 418:457–472

    PubMed  CAS  Google Scholar 

  163. Hamam BN, Amaral DG, Alonso AA (2002) Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. J Comp Neurol 451:45–61

    PubMed  Google Scholar 

  164. Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast Article ID 381243, doi:10.1155/2008/381243

    Google Scholar 

  165. Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections. In: Cerebral cortex Further aspects of cortical function, including hippocampus. Vol.. Jones EG, Peters A (Eds.), Plenum, London

    Google Scholar 

  166. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128–143

    PubMed  CAS  Google Scholar 

  167. Klink R, Alonso A (1997) Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol 77:1813–1828

    PubMed  CAS  Google Scholar 

  168. Gloveli T, Schmitz D, Empson RM, Dugladze T, Heinemann U (1997) Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. Neuroscience 77:629–648

    PubMed  CAS  Google Scholar 

  169. Gloveli T, Dugladze T, Schmitz D, Heinemann U (2001) Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus. Eur J Neurosci 13:413–420

    PubMed  CAS  Google Scholar 

  170. Canto CB, Ganter P, Moser EI, Moser MB, Witter MP (2006) Neuron diversity in the medial entorhinal cortex of the rat. Soc Neurosci Abst 32:68

    Google Scholar 

  171. Tömböl T, Csillag A, Stewart MG (1988) Cell types of the hyperstriatum ventrale of the domestic chicken (Gallus domesticus): A Golgi study. J Hirnforsch 29:319–334

    PubMed  Google Scholar 

  172. Tömböl T, Csillag A, Stewart MG (1988) Cell types of the paleostriatal complex of the domestic chicken (Gallus domesticus): A Golgi study. J Hirnforsch 29:493–507

    PubMed  Google Scholar 

  173. Kröner S, Gottmann K, Hatt H, Güntürkün O (2002) Electrophysiological and morphological properties of cell types in the chick neostriatum caudolaterale. Neuroscience 110:459–473

    PubMed  Google Scholar 

  174. Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. J Psychol Neurol 45:381–438

    Google Scholar 

  175. Lingenhohl K, Finch DM (1991) Morphological characterization of rat entorhinal neurons in vivo: Soma-dendritic structure and axonal domains. Exp Brain Res 84:57–74

    PubMed  CAS  Google Scholar 

  176. Schwartz SP, Coleman PD (1981) Neurons of origin of the perforant path. Exp Neurol 74:305–312

    PubMed  CAS  Google Scholar 

  177. Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 70:144–157

    PubMed  CAS  Google Scholar 

  178. Klink R, Alonso A (1997) Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus 7:571–583

    PubMed  CAS  Google Scholar 

  179. Erichsen JT, Bingman VP, Krebs JR (1991) The distribution of neuropeptides in the dorsomedial forebrain of the pigeon (Columba livia): A basis for regional subdivisions. J Comp Neurol 314:478–492

    PubMed  CAS  Google Scholar 

  180. Krebs JR, Erichsen JT, Bingman VP (1991) The distribution of neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J Comp Neurol 314:467–477

    PubMed  CAS  Google Scholar 

  181. Hoogland PV, Vermeulen-Van Der Zee E (1995) Efferent connections of the lateral cortex of the lizard Gekko gecko: Evidence for separate origins of medial and lateral pathways from the lateral cortex to the hypothalamus. J Comp Neurol 352:469–480

    PubMed  CAS  Google Scholar 

  182. Martinez-Garcia F, Amiguet M, Olucha F, Lopez-Garcia C (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neurosci Lett 63:39–44

    PubMed  CAS  Google Scholar 

  183. Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199

    PubMed  Google Scholar 

  184. Kerr KM, Agster KL, Furtak SC, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas. Hippocampus 17:697–708

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Srivastava, U.C., Maurya, R.C. (2010). Evolution of the cerebral cortex in amniotes: Anatomical consideration of neuronal types. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_21

Download citation

Publish with us

Policies and ethics