Skip to main content

Biodiversity, phylogeny and evolution of fungi

  • Chapter
Book cover Nature at Work: Ongoing Saga of Evolution

Abstract

India is rich in biodiversity. One-third of fungal diversity of the globe exists in India. The early fossil record of the fungi is poor, as unlike other organisms, fungal structures do not fossilize well. Thus, theories on phylogeny of fungi are based on the morphological features of the extant fungi. From the beginning of the 20th century fungi were proposed to be monophyletic, assuming that all the fungi were derived from an algal ancestor that lost its ability to photosynthesize. This gave rise to the flagellate fungi, from which rest of the fungi evolved. The loss of flagella and the evolution of zygospore gave rise to the Zygomycotina. The uninucleate zygospores of the Edogonales gave rise to the Ascomycota. The link between them being a fungus resembling Dipodascopsis (Ascomycota). The unicellular yeasts and complex filamentous Ascomycota members having extended dikaryotic stage evolved from it, believed to be similar to modern day Taphrina. This Taphrina-like ancestor was believed to have given rise to the ancestral Basidiomycota.

Monophyletic origin of fungi was followed by most of the mycologists till 1960s. But, some mycologists proposed polyphyletic origin, with red algae as origin of Ascomycota. In late 1960s Oomycota was separated from the fungi. Slime molds were also separated into a different kingdom as well. Fungi were separated into two kingdoms: All the flagellate fungi were placed in kingdom Protista (including Chytridiomycota and slime molds) and the remainder in kingdom Myceteae.

Hypothesis of phylogeny of fungi has changed radically with the advent of molecular techniques, ultrastructural and biochemical studies. On the basis of these studies in the late 1980s chytridiomycetes, zygomycetes, ascomycetes and basidiomycetes were included in kingdom Fungi. Oomycota, hyphochytrids, labyrinthulids, thraustochytrids and slime molds were accommodated in pseudo fungi. In 2007 a new classification of kingdom fungi-based on recent molecular phylogenetic analysis and morphotaxonomy was proposed, having one subkingdom — Dikarya and seven phyla. Recently in the 10th edition of Dictionary of the Fungi (2008) three kingdoms are accepted viz. Chromista, Fungi and Protozoa. True fungi belong to kingdom fungi having six phyla —Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, Microsporidia and Zygomycota. The review contributes to the understanding of phylogenetic hypotheses, evolutionary relationships and circumscription of the fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayana, TS, Rawat S, Johri BN (2005) Fungal biodiversity: Distribution, conservation and prospecting of fungi from India. Curr Sci 89(1):58–71

    Google Scholar 

  2. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  3. Domoto A, Iwatsuki K (1997) Threats of global warming to biological diversity. Tshukiji Shokan, Tokyo (In Japanese)

    Google Scholar 

  4. Hawksworth DL (1994) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  5. Kirk PM, Cannon PF, Minter DW, Stalpers JA (Eds.) (2008) In: Dictionary of the Fungi. 10th edition, CABI

    Google Scholar 

  6. Bilgrami KS, Jamaluddin S, Rizwi MA (1991) Fungi of India — List and References. Today and Tomorrow’s Print and Publ., New Delhi

    Google Scholar 

  7. Sarbhoy AK, Varshney JL, Agarwal DK(1996) Fungi of India (1982–92). CBS Publ and Distributors, New Delhi

    Google Scholar 

  8. Jamaluddin, Goswami MG, Ojha BM (2004) Fungi of India — 1989–2001. Scientific Publ., Jodhpur, India

    Google Scholar 

  9. Darwin CR (1859) On the origin of species by means of natural selection. John Murray Albemarle Street, London

    Google Scholar 

  10. Darwin CR (1871) The descent of man and selection in relation to sex. Vol. I, II. John Murray Albemarle Street, London

    Book  Google Scholar 

  11. Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Ann Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  12. Bartnicki-Garcia S (1987) The cell wall: a crucial structure in fungal evolution. In: Evolutionary biology of the fungi. Rayner ADM, Brasier CM, Moore D (Eds.), Cambridge University Press, Cambridge

    Google Scholar 

  13. Bessey EA (1942) Some problems in fungus phylogeny. Mycologia 34:355–379

    Article  Google Scholar 

  14. Cain RF (1972) Evolution of the fungi. Mycologia 64:1–14

    Article  Google Scholar 

  15. Demoulin V (1974) The origin of Ascomycetes and Basidiomycetes, the case for a red algal ancestry. Bot Rev 40:315–345

    Article  Google Scholar 

  16. Gäumann EA (1952) The fungi, a description of their morphological features and evolutionary development. Hafner Publ., New York

    Google Scholar 

  17. LéJohn HB (1971) Enzyme regulation, lysine pathways, and cell wall structures as indicators of major lines of evolution in fungi. Nature 231:164–168

    Article  PubMed  Google Scholar 

  18. LéJohn HB (1974) Biochemical parameters of fungal phylogenetics. Evol Biol 7:79–125

    Article  Google Scholar 

  19. Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the protists. Academic Press, New York

    Google Scholar 

  20. Savile DBO (1968) Possible interrelationships between fungal groups. In: The fungi, an advanced treatise. Ainsworth GC, Susmann AS (Eds.), Academic Press, New York

    Google Scholar 

  21. Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implication. Am Naturalist 98:435–446

    Article  CAS  Google Scholar 

  22. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Sugiyama J (1998) Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39:487–511

    Article  Google Scholar 

  24. Sugiyama J, Nishida H (1995) The higher fungi: their evolutionary relationships and implications for fungal systematics. In: Biodiversity and evolution. Arai R, Kato M, Doi Y (Eds.), The National Science Museum Foundation, Tokyo

    Google Scholar 

  25. Sugiyama J, Nagahama T, Nishida H (1996) Fungal diversity and phylogeny with emphasis on 18S ribosomal DNA sequence divergence. In: Microbial diversity in time and space. Colwell RR, Simidu U, Ohwada K (Eds.), Plenum Press, New York

    Google Scholar 

  26. Atkinson GF (1915) Phylogeny and relationships in the ascomycetes. Ann Missouri Botan Gardens 2:315–376

    Article  Google Scholar 

  27. Gäumann EA, Dodge CW (1928) Comparative morphology of fungi. McGraw Hill, New York

    Google Scholar 

  28. Luttrell ES (1955) The ascostromatic ascomycetes. Mycologia 46:511–532

    Article  Google Scholar 

  29. Bessey EA (1950) Morphology and Taxonomy of Fungi. The Blakiston Co., Philadelphia

    Google Scholar 

  30. Sachs J (1874) Lehrbuch der Botanik. 4th edition, Engelmann, Leipizig

    Google Scholar 

  31. Denison WC, Carroll GC (1966) The Primitive Ascomycete: ANew Look at an Old Problem. Mycologia 58:249–269

    Article  Google Scholar 

  32. Kohlmeyer J (1973) Fungi from marine algae. Botanica Marina 16:201–215

    Article  Google Scholar 

  33. Kohlmeyer J, Kohlmeyer E (1979) Marine Mycology, the Higher Fungi. Academic Press, San Francisco

    Google Scholar 

  34. Pringsheim N (1858) Beiträge zur Morphologie und Systematik der Algen. II. Die Saprolegnieen. Jahrb Wiss Bot 1:284–304

    Google Scholar 

  35. Kreisel H (1969) Grundzüge eines natürlichen systems der pilze. Cramer Lehre, Germany

    Google Scholar 

  36. Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Evolutionary biology of the fungi. ADM Rayner, CM Brasier, D Moore (Eds.), Cambridge Univ Press, Cambridge

    Google Scholar 

  37. Vogel HJ (1965) Lysine biosynthesis and evolution: fungi, gymnosperms and angiosperms. In: Evolving genes and proteins. Bryson V, Vogel HJ (Eds.), Academic Press, New York

    Google Scholar 

  38. Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed  CAS  Google Scholar 

  39. Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1:231–241 (1996) In: Introductory Mycology. 4th edition, John Wiley and Sons, New York

    Google Scholar 

  40. Van der Auwere G, deBaere R, Van der Peer Y, de Rijk P Van der Broeck I, de Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12:671–678

    Google Scholar 

  41. Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-likerRNAsequences from Labyrinthuloides minuta and Cafeteria roenbergenis. Phycologia 33:369–377

    Article  Google Scholar 

  42. Castlebury LA, Domier LL (1998) Small subunit ribosomal RNA gene phylogeny of Plasmodiophora brassicae. Mycologia 90:102–107

    Article  CAS  Google Scholar 

  43. Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: Congruent evidence from multiple proteins. Proc Nat Acad USA 90:11558–11562

    Article  CAS  Google Scholar 

  44. Sogin ML, EIwood HJ, Gunderson JH (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Article  PubMed  CAS  Google Scholar 

  45. Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340–342

    Article  PubMed  CAS  Google Scholar 

  46. Nikoh N, Hayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationships of the kingdoms Animalia, Plantae, and Fungi inferred from 23 different protein species. Mol Biol Evol 11:762–768

    PubMed  CAS  Google Scholar 

  47. Veuthey AL, Bittar G (1998) Phylogenetic relationships of Fungi, Plantae, and Animalia inferred from homologous comparison of ribosomal proteins. J Mol Evol 47:81–92

    Article  PubMed  CAS  Google Scholar 

  48. Walker WF(1984) 5S ribosomal RNA sequences from Zygomycotina and evolutionary implications. Syst Appl Microbiol 5:448–456

    Google Scholar 

  49. Moss ST, Young TWK (1978) Phyletic considerations of the Harpellales and Asellariales (Trichomycetes, Zygomycotina) and the Kickxellales (Zygomycetes, Zygomycotina). Mycologia 70:944–963

    Article  Google Scholar 

  50. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Article  PubMed  CAS  Google Scholar 

  51. Forster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82:306–312

    Article  Google Scholar 

  52. Bowman BH, Taylor JW, Brownlee AG, Lee J, Lu SD, White TJ (1992) Molecular evolution of the fungi: Relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol Biol Evol 9:285–296

    PubMed  CAS  Google Scholar 

  53. Kramer CL (1987) The Taphrinales. In: The expanding realm of yeast-like fungi. de Hoog GS, Smith MT, Weijman ACM (Eds.), Elsevier, Amsterdam

    Google Scholar 

  54. Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4:227–277

    Article  Google Scholar 

  55. Gargas A, Taylor JW (1995) Phylogeny of discomycetes, and early radiations of apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp Mycol 19:7–15

    Article  PubMed  CAS  Google Scholar 

  56. Nishida H, Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Mol Biol Evol 10:431–436

    PubMed  CAS  Google Scholar 

  57. Nishida H, Sugiyama J (1994) Archiascomycetes: detection of a major new lineage within the Ascomycota. Mycoscience 35:361–366

    Article  Google Scholar 

  58. Nishida H, Blanz PA, Sugiyama J (1993) The higher fungus Protomyces inouyei has two group I introns in the 18S rRNA gene. J Mol Evol 37:25–28

    Article  PubMed  CAS  Google Scholar 

  59. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98(6):829–837

    Article  PubMed  Google Scholar 

  60. Hibbett DS, Grimaldi D, Donoghue MJ (1995) Cretaceous mushrooms in amber. Nature 377:487

    Article  CAS  Google Scholar 

  61. Hibbett DS, Grimaldi D, Donoghue MJ (1991) Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. Am J Bot 84:981

    Article  Google Scholar 

  62. Hillis DM, Moritz C, Mable C (Eds.) (1996) In: Molecular Systematics. 2nd edition, Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  63. Paquin B, Laforest MJ, Forget L, Roewer I., Wang Z, Longcore J, Lang BF (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31:380–395

    Article  PubMed  CAS  Google Scholar 

  64. Ridley M (1996) In: Evolution. 2nd edition, Blackwell Science, Cambridge, Massachusetts

    Google Scholar 

  65. Taylor JW (1998) Molecular systematics and evolution. (Abstract) 6th Intern Mycol Congr (IMC6), Jerusalem, Israel

    Google Scholar 

  66. Barr DJ (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84:1–11

    Article  Google Scholar 

  67. Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  68. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    Article  PubMed  CAS  Google Scholar 

  69. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090

    Article  PubMed  CAS  Google Scholar 

  70. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12): 4576–4579

    Article  PubMed  CAS  Google Scholar 

  71. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Manoharachary, C., Kunwar, I.K., Reddy, S.V. (2010). Biodiversity, phylogeny and evolution of fungi. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_10

Download citation

Publish with us

Policies and ethics