Advertisement

Content based image retrieval using weighted hamming distance image hash value

  • H. B. Kekre
  • Dhirendra Mishra
Conference paper

Abstract

A hash function is any well-defined procedure or mathematical function that converts a large, possibly variable-sized amount of data into a small datum, usually a single integer that may serve as an index to an array. The values returned by a hash function are called hash values, hash codes, hash sums, or simply hashes. Hash functions are mostly used to speed up table lookup or data comparison tasks such as finding items in a database, detecting duplicated or similar records in a large file, finding similar stretches in DNA sequences, and so on.

Keywords

Feature Vector Hash Function Image Retrieval Query Image Content Base Image Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Jain, S. Prabhakar. L. Hong, and S. Pankanti, “Filterbank-based Fingerprint Matching,” IEEE Trans. Image Processing, Vol. 9, No. 5, pp. 846-859, May 2000CrossRefGoogle Scholar
  2. 2.
    Arun Ross, Sarat Dass, Anil Jain, “A deformable model for fingerprint matching,” Pattern Recognition Vol. 38, pp. 95-103, 2005CrossRefGoogle Scholar
  3. 3.
    A. K. Jain, L. Hong, Y. Kulkarni “A Biometric System using Fingerprint, Face, and Speech,” Proc.2nd Int’l Conference on Audio- and Video-based Biometric Person Auhentification, Washington D.C., pp. 182-187, 1999Google Scholar
  4. 4.
    Federal Bureau of investigation, The Science of Fingerprints:Classification and Uses, Washington, D.C., 1984, U.S. Government Printing officeGoogle Scholar
  5. 5.
    F. A. Afsar, M. Arif and M. Hussain, “Fingerprint Identification and Verification,” pp. 141-146, 2004Google Scholar
  6. 6.
    A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity authentication system using fingerprints,” Proc. IEEE, Vol. 85, pp. 1365-1388, Sept. 1997CrossRefGoogle Scholar
  7. 7.
    Y. Kobayashi, H. Toyoda, N. Mukohzaka, N. Yoshida and T. Hara, “Fingerprint identification by an optical joint transform correlation,” optical review, Vol. 3(6A), pp. 413-405, 1996Google Scholar
  8. 8.
    Frank Y. Shih, Senior Member, IEEE, and Yi-Ta Wu, “The Efficient Algorithms for Achieving Euclidean Distance Transformation,” IEEE Transactions on Image Processing, vol. 13, no. 8, August 2004Google Scholar
  9. 9.
    Yaorong Ge and J. Michael Fitzpatrick “On the Generation of Skeletons from Discrete Euclidean Distance Maps,” IEEE Trans. Pattern Analysis and machine Intelligence, vol. 18, No. 11, November 1996Google Scholar
  10. 10.
    N.Sudha, S. Nandi, P.K. Bora, K.Sridharan, “Efficient computation of Euclidean Distance Transform for application in Image processing,” IEEE Transaction on Image processing, 1998Google Scholar
  11. 11.
    P. E. Danielsson, “A new shape factor,” Comput. Graphics        Image Processing, pp. 292-299, 1978Google Scholar
  12. 12.
    I. Pitas and A. N. Venetsanopoulos, “Morphological shape decomposition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, no. 1, pp. 38-45, Jan. 1990CrossRefGoogle Scholar
  13. 13.
    C.Arcelli and G.Sanniti de Baja. “Computing Voronoi diagrams in digital pictures,” Pattern Recognition Letters, pages 383-389, 1986Google Scholar
  14. 14.
    H. Blum and R. N. Nagel, “Shape Description UsingWeighted Symmetric Axis Features,” Pattern Recognition, vol. 10, pp. 167-180, 1978MATHCrossRefGoogle Scholar
  15. 15.
    Wai-Pak Choi, Kin-Man Lam and Wan-Chi Siu, “ An efficient algorithm for the extraction of Euclidean skeleton,” IEEE Transaction on Image processing, 2002Google Scholar
  16. 16.
    Frank Y. Shih and Christopher C. Pu, “A maxima-tracking method for skeletonization from Euclidean distance function,” IEEE Transaction on Image processing, 1991Google Scholar
  17. 17.
    Anil Jain, Arun Ross, Salil Prabhakar, “Fingerprint matching using minutiae and texture features,” Int’l conference on Image Processing (ICIP), pp. 282-285, Oct. 2001Google Scholar
  18. 18.
    John Berry and David A. Stoney “The history and development of fingerprinting,” in Advances in Fingerprint Technology, Henry C. Lee and R. E. Gaensslen, Eds., pp. 1-40. CRC Press Florida, 2nd edition, 2001Google Scholar
  19. 19.
    Emma Newham, “The biometric report,” SJB Services, 1995Google Scholar
  20. 20.
    Arun Ross, Anil Jain, James Reisman, “A hybrid fingerprint matcher,” Int’l conference on Pattern Recognition (ICPR), Aug 2002Google Scholar
  21. 21.
    A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Veelenturf, and B. J. van der Zwaag, “A correlation-based fingerprint verification system,” Proceedings of the ProRISC2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, Netherlands, Nov 2000Google Scholar
  22. 22.
    H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding using Kekre’s LUV Color Space for Image Retrieval”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, No.3, Summer 2008. Available online at www.waset.org/ ijecse/v2/v2-3-23.pdf
  23. 23.
    H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”, ICGST International Journal on Graphics, Vision and Image Processing (GVIP), Available online at http://www.icgst.com/gvip
  24. 24.
    H.B.Kekre, Sudeep D. Thepade, “Using YUV Color Space to Hoist the Performance of Block Truncation Coding for Image Retrieval”, IEEE International Advanced Computing Conference 2009 (IACC’09), Thapar University, Patiala, INDIA, 6-7 March 2009Google Scholar
  25. 25.
    H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Augmented Block Truncation Coding Techniques”, ACM International Conference on Advances in Computing,Communication and Control (ICAC32009), pp.: 384-390,23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available online at ACM portalGoogle Scholar
  26. 26.
    H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “DCT Applied to Column mean and Row Mean Vectors of Image for Fingerprint Identification”, International Conference on Computer Networks and Security, ICCNS-2008, 27-28 Sept 2008, Vishwakarma Institute of Technology, PuneGoogle Scholar
  27. 27.
    H.B.Kekre, Tanuja K. Sarode, “Fast Codebook Search Algorithm for Vector Quantization Using Sorting Technique”. ACM International Conference on Advances in Computing, Communication and Control (ICAC3), Fr. CRCE Mumbai, 23-24 Jan 2009, Available on ACM PortalGoogle Scholar
  28. 28.
    H.B.Kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook”, WASET International Journal of Computer and Information Science and Engineering (IJCISE), Volume 2, Number 4, pp. 235-239, Fall 2008. http://www.waset.org/ijcise
  29. 29.
    H.B.Kekre, Dhirendra Mishra, “Image retrieval using image hashing”, Techno-Path: Journal of Science, Engineering & Technology Management, SVKM’s NMIMS Vol. 1 No.3 Oct 2009Google Scholar

Copyright information

© Springer India Pvt. Ltd 2011

Authors and Affiliations

  • H. B. Kekre
    • 1
  • Dhirendra Mishra
    • 2
  1. 1.Computer Engineering DepartmentMukesh Patel School of Technology Management and Engineering, SVKM’s NMIMS UniversityMumbaiIndia
  2. 2.Computer Engineering DepartmentMukesh Patel School of Technology Management and Engineering, SVKM’s NMIMS UniversityMumbaiIndia

Personalised recommendations