Advertisement

Dynamic signature using time based vector quantization by Kekre’s median codebook generation algorithm

  • H. B. Kekre
  • V  A. Bharadi
  • T. K. Sarode
Conference paper

Abstract

Dynamic Signature Recognition is one of the highly accurate biometric traits. We capture live signature of the person hence it is possible to have dynamic characteristics of signature for matching purpose. The signature captured by digitizer gives information about dynamic nature of signature and pressure applied while signing. We propose use of clustering by Vector Quantization for Matching of Dynamic Signature. Signature points are clustered on Time axis and codebook is generated, The technique is fast and gives good accuracy.

Keywords

Vector Quantization Signature Recognition Dynamic Signature Biometric Trait Digitizer Tablet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Jain, A. Ross, S. Prabhakar, “An Introduction to Biometric Recognition”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 1, January 2004Google Scholar
  2. 2.
    A. K. Jain, A. Ross, and S. Prabhakar, “On Line Signature Verification”, Pattern Recognition, vol. 35, no. 12, Dec 2002. pp. 2963-2972MATHCrossRefGoogle Scholar
  3. 3.
    “Signature Recognition,” GAITS: Global Analytic Info Technology Services, August2005. http://www.gaits.com/ biometrics_signature.asp
  4. 4.
    A. Zimmer and L.L. Ling, “A Hybrid On/Off Line Handwritten Signature Verification System”, ICDAR, vol.1, pp. 424-428, Aug.2003Google Scholar
  5. 5.
    D. Hamilton, J. Whelan, A. McLaren, “Low cost dynamic signature verification system”, Security and Detection, 1995. IEEE CNF European Convention, 16-18 May 1995. pp 202 –206Google Scholar
  6. 6.
    R. Plamondon, G. Lorette, “Automatic Signature Verification and Writer Identification – The State of the Art”, Pattern Recognition, vol. 4, no. 2, pp. 107–131, 1989CrossRefGoogle Scholar
  7. 7.
    R. Plamondon, “The design of an On-line signature verification system”, Theory to practice, International journal of Pattern Recognition and Artificial Intelligence, (1994). pp 795-811Google Scholar
  8. 8.
    H B kekre, V A Bharadi, “Specialized Global Features for Off-line Signature Recognition”, 7th Annual National Conference on Biometrics RFID and Emerging Technologies for Automatic Identification, India , January 2009Google Scholar
  9. 9.
    H B Kekre, V A Bharadi, “Signature Recognition using Cluster Based Global Features”, IEEE International Conference (IACC 2009), Thapar University, Patiala- Punjab, India. March 2009Google Scholar
  10. 10.
    H. Baltzakis, N. Papamarkos, “A new signature verification technique based on a two-stage neural network classifier”, Engineering Applications of Artificial Intelligence 14 (2001)Google Scholar
  11. 11.
    H. Dullink, B. van Daalen, J. Nijhuis, L. Spaanenburg, H. Zuidhof, “Implementing a DSP Kernel for Online Dynamic Handwritten Signature Verification using the TMS320 DSP Family”, EFRIE, France December 1995 SPRA304Google Scholar
  12. 12.
    H. lei, S. Palla and V Govindraju, “ER2: an Intuitive Similarity measure for On-line Signature Verification”, Proceedings of CUBS 2005Google Scholar
  13. 13.
    T. Rhee, S. Cho, “On line Signature Recognition Using Model Guided Segmentation and Discriminative feature selection for skilled forgeries”, IEEE Transaction on pattern recognition, Jan 2001Google Scholar
  14. 14.
    V. Nalwa, “Automatic On-Line Signature Verification”, proceedings of the IEEE Transactions on Biometrics, vol. 85, No. 2, February 1997Google Scholar
  15. 15.
    R. Doroz, K. Wrobel “Method of Signature Recognition with the Use of the Mean Differences”, Proceedings of the ITI 2009 31st Int. Conf. on Information Technology Interfaces, June 22-25, 2009Google Scholar
  16. 16.
    SVC (Signature Verification Competition) database available at the website:http://www.cse.ust.hk/svc2004/index.html
  17. 17.
    H. B. Kekre, V A Bharadi, “Using Component Object Model for Interfacing Biometrics Sensors to Capture Multidimensional Features”, IJJCCT 2009, China, Dec 2009Google Scholar
  18. 18.
  19. 19.
    A. P. Godse, “Computer Graphics”, Technical publication. 2002Google Scholar
  20. 20.
    H. B. Kekre, V A Bharadi, “Dynamic Signature Pre-processing by Modified Digital Difference Analyzer Algorithm”, ThinkQuest 2010, Mumbai, India , March 2010Google Scholar
  21. 21.
    Gray R., “Vector quantization”, IEEE ASSP Mag., pp.: 4-29, Apr. 1984Google Scholar
  22. 22.
    Linde Y, Buzo A., and Gray R., “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp.: 84-95, 1980CrossRefGoogle Scholar
  23. 23.
    Kekre H., Sarode T., “An Efficient Fast Algorithm to Generate Codebook for Vector Quantization,” ICETET-2008, Nagpur, India, pp.: 62- 67, 16-18 July 2008. Avaliable at IEEE XploreGoogle Scholar

Copyright information

© Springer India Pvt. Ltd 2011

Authors and Affiliations

  • H. B. Kekre
    • 1
  • V  A. Bharadi
    • 1
  • T. K. Sarode
    • 1
  1. 1.NMIMS UniversityMumbaiIndia

Personalised recommendations