Advertisement

Image segmentation of MRI images using vector quantization techniques

  • H. B. Kekre
  • Saylee M. Gharge
  • Tanuja K. Sarode
Conference paper

Abstract

Image segmentation plays a crucial role in many medical imaging applications by automating or facilitating the delineation of anatomical structures and other regions of interest. Diagnostic imaging is an invaluable tool in medicine today. Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Digital Mammography, and other imaging modalities provide an effective means for noninvasive mapping the anatomy of a subject. Methods for performing segmentations vary widely depending on the specific application, imaging modality, and other factors. There is currently no single segmentation method that yields acceptable results for every medical image.

Keywords

Image Segmentation Magnetic Resonance Imaging Image Vector Quantization Digital Mammography Training Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shenton, R. Kikinis, F. Jolesz, et al. Abnormalities of the Left Temporal Lobe and Thought Disorderin Schizophrenia. N. Engl. J. Med: 604 to 612, 1992Google Scholar
  2. 2.
    K. Hohne et al. A framework for the Generation of 3D Anatomical Atlases. In SPIE Vol. 1808, Visualization in Biomedical Computing 1992Google Scholar
  3. 3.
    R. Kikinis, F.A. Jolesz, W.E. Lorensen, H.E. Cline, P.E Stieg, Black 3d Reconstruction of Skull Base Tumors from MRI Data for Neurosurgical Planning.In Proceedings of the Society of Magnetic Resonance in Medicine Conference, 1991Google Scholar
  4. 4.
    R. Kikinis, D. Altobelli, W. Lorensen, W. Wells, and G. Ettinger. Pre- and intraoperative tumor localization using 3d renderings of mri’s. 12th Annual Scientific Meeting of the Society of Magnetic Resonance in Medecine, 1993Google Scholar
  5. 5.
    D. Levin, X. Hu, K. Tan, et al. The Brain: Integrated Three-Dimensional Display of MR and PET Images. Radiology, 1989Google Scholar
  6. 6.
    J. Belliveau, D. Kennedy, R. McKinstry, et al. Functional Mapping of the Human Visual Cortex by Magnetic Resonance Imaging. Science: 716 to 719, November 1991Google Scholar
  7. 7.
    M. Vannier, D. Jordan, W. Murphy, Multi-Spectral Analysis of Magnetic Resonance Images. Radiology: 221 to 224, 1985Google Scholar
  8. 8.
    M. Kohn, N. Tanna, G. Herman, et al. Analysis of Brain and Cerebrospinal Fluid Volumes with MR Imaging. Radiology,: 115 to 122, 1991Google Scholar
  9. 9.
    R.B. Lufkin, T. Sharpless, B. Flannigan, and W. Hanafee. Dynamic-Range Compression in Surface- Coil MRI. AJR: 379 to 382, 1986Google Scholar
  10. 10.
    L. Axel, J. Costantini, and J. Listerud. Intensity Correction in Surface-Coil MR Imaging. AJR: 418 to 420, 1987Google Scholar
  11. 11.
    K.O. Lim and A. P_erbaum. Segmentation of MR Brain Images into Cerebrospinal Fluid Spaces, White and Gray Matter. JCAT:588 to 593, 1989Google Scholar
  12. 12.
    B. Dawant, A. Zijdenbos, and R. Margolin Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Trans. Med. Imaging: 770 to 781, 1993Google Scholar
  13. 13.
    J. Gohagan, E. Spitznagel, W. Murphy, M. Vannier, Multispectral Analysis of MR Images of the Breast.Radiology:703 to 707, 1987Google Scholar
  14. 14.
    S. Aylward and J. Coggins. Spatially Invariant Classification of Tissues in MR Images. In Proceedings of the Third Conference on Visualization in Biomedical Computing. SPIE, 1994Google Scholar
  15. 15.
    P. Andrey, P. Tarroux, Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation, IEEE Transactions on Pattern Analysis and Machine intelligence 20 (3) (1998) 252–262CrossRefGoogle Scholar
  16. 16.
    U. Bhattacharya, B.B. Chaudhuri, S.K. Parui, An MLP-based texture segmentation method without selecting a feature set, Image Vision Computing 15 (1997) 937–948CrossRefGoogle Scholar
  17. 17.
    C. Bouman, B. Liu, Multiple resolution segmentation of textured images, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (2) (1991) 99–113CrossRefGoogle Scholar
  18. 18.
    Dr. H. B. Kekre, Saylee Gharge, “Selection of Window Size for Image Segmentation using Texture Features,” International Conference on Advanced Computing & Communication Technologies(ICACCT-2008) Asia Pacific Institute of Information Technology SD India, Panipat, 08-09 November, 2008Google Scholar
  19. 19.
    Dr. H. B. Kekre, Saylee Gharge, “Image Segmentation of MRI using Texture Features,” International Conference on Managing Next Generation Software Applications, School of Science and Humanities, Karunya University, Coimbatore, Tamilnadu, 05-06 December, 2008Google Scholar
  20. 20.
    Dr. H. B. Kekre, Saylee Gharge, “Statistical Parameters like Probability and Entropy applied to SAR image segmentation,” International Journal of Engineering Research & Industry Applications (IJERIA), Vol.2,No.IV, pp. 341–353Google Scholar
  21. 21.
    Dr. H. B. Kekre, Saylee Gharge, “SAR Image Segmentation using co-occurrence matrix and slope magnitude,” ACM International Conference on Advances in Computing, Communication & Control (ICAC3-2009), pp.: 357-362, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg. Available on ACM portalGoogle Scholar
  22. 22.
    L. Vincent, P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion Simulations, IEEE Trans. PAMI., 13 (6) (1991) 583–593CrossRefGoogle Scholar
  23. 23.
    F. Meyer, Topographic distance and watershed lines, Signal Processing, 38 (1) (1994) 113–125MATHCrossRefGoogle Scholar
  24. 24.
    A. Bieniek, A. Moga, An efficient watershed algorithm based on connected components, Pattern Recognition, 33 (6) (2000) 907–916CrossRefGoogle Scholar
  25. 25.
    M. Frucci, Over segmentation reduction by fl ooding regions and digging watershed lines, International Journal of Pattern Recognition and Artificial Intelligence, 20 (2006) 15–38CrossRefGoogle Scholar
  26. 26.
    L. E. Band, Topographic partition of watersheds with digital elevation models, Water Resources Res., 22 (1) (1986) 15–24CrossRefGoogle Scholar
  27. 27.
    Tou, J., and Gonzalez, Pattern Recognition Principles Addison-Wesley Publishing Company 1974Google Scholar
  28. 28.
    R. M. Gray, “Vector quantization”, IEEE ASSP Mag., pp.: 4-29, Apr. 1984Google Scholar
  29. 29.
    Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp.: 84-95, 1980CrossRefGoogle Scholar
  30. 30.
    Robert M. Haralick, Statistical and Structural Approaches to Texture, IEEE Proceedings of vol. 67, no. 5, May 1979Google Scholar
  31. 31.
    H. B. Kekre, Saylee M.Gharge, “Tumour Demarcation of Mammography Images using Entropy with Different Window Sizes,” Second International Conference on Emerging Trends in Engineering and Technology, ICETET-2008, held at Raisoni College of Engineering, Nagpur, India, pp.: 889- 894, 16-18 Dec. 2009. Available at IEEE XploreGoogle Scholar
  32. 32.
    Leila Shafarenko and Maria Petrou, “ Automatic Watershed Segmentation of Randomly Textured Color Images”, IEEE Transactions on Image Processing, Vol.6, No.11, pp. 1530–1544, 1997CrossRefGoogle Scholar
  33. 33.
    Basim Alhadidi, Mohammad H. et al, “ Mammogram Breast Cancer Edge Detection Using Image Processing Function” Information Technology Journal 6(2):217- 221,2007,ISSN-1812-5638Google Scholar
  34. 34.
    H.B.Kekre, Tanuja K. Sarode, “New Fast Improved Clustering Algorithm for Codebook Generation for Vector Quantization”, International Conference on Engineering Technologies and Applications in Engineering, Technology and Sciences, Computer Science Department, Saurashtra University, Rajkot, Gujarat. (India), Amoghsiddhi Education Society, Sangli, Maharashtra (India), 13th – 14th January 2008Google Scholar
  35. 35.
    H. B. Kekre, Tanuja K. Sarode, “New Fast Improved Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Engineering and Technology, vol.1, No.1, pp.: 67-77, September 2008Google Scholar
  36. 36.
    H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Computer Science and Information Technology, Vol. 1, No. 1, pp.: 7-12, Jan 2009Google Scholar
  37. 37.
    H. B. Kekre, Tanuja K. Sarode, “An Efficient Fast Algorithm to Generate Codebook for Vector Quantization,” First International Conference on Emerging Trends in Engineering and Technology, ICETET-2008, held at Raisoni College of Engineering, Nagpur, India, pp.: 62- 67, 16-18 July 2008. Available at IEEE XploreGoogle Scholar
  38. 38.
    H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Computer Science and Information Technology, Vol. 1, No. 1, pp.: 7-12, Jan 2009Google Scholar
  39. 39.
    H. B. Kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook”, WASET International Journal of cal Computer Information Science and Engineering (IJCISE), Volume 2, No. 4, pp.: 235-239, Fall 2008. Available: http://www.waset.org/ijcise
  40. 40.
    H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique”, ACM International Conference on Advances in Computing, Communication and Control (ICAC3- 2009), pp: 317-325, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available on ACM portalGoogle Scholar
  41. 41.
    H. B. Kekre, Tanuja K. Sarode, “Speech Data Compression using Vector Quantization”, WASET International Journal of Computer and Information Science and Engineering (IJCISE), vol. 2, No. 4, pp.: 251-254, Fall 2008. available: http://www.waset.org/ijcise
  42. 42.
    H. B. Kekre, Ms. Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”, ICGST-International Journal on Graphics, Vision and Image Processing (GVIP), Volume 9, Issue 5, pp.: 1-8, September 2009. Available online at http://www.icgst.com/ gvip/Volume9/Issue5/P1150921752.html
  43. 43.
    Chin-Chen Chang, Wen-Chuan Wu, “Fast Planar-Oriented Ripple Search Algorithm for Hyperspace VQ Codebook”, IEEE Transaction on image processing, vol 16, no. 6, pp.: 1538-1547, June 2007Google Scholar
  44. 44.
    C. Garcia and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis,” IEEE Trans. Multimedia, vol. 1, no. 3, pp.: 264–277, Sep. 1999CrossRefGoogle Scholar
  45. 45.
    H. Y. M. Liao, D. Y. Chen, C. W. Su, and H. R. Tyan, “Realtime event detection and its applications to surveillance systems,” in Proc. IEEE Int. Symp. Circuits and Systems, Kos, Greece, pp.: 509–512, May 2006Google Scholar
  46. 46.
    J. Zheng and M. Hu, “An anomaly intrusion detection system based on vector quantization,” IEICE Trans. Inf. Syst., vol. E89-D, no. 1, pp.: 201–210, Jan. 2006CrossRefGoogle Scholar
  47. 47.
    H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Kekre’s Fast Codebook Generation Algorithm Based on Energy Ordering Concept”, ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), pp.: 357362, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Available on ACM portalGoogle Scholar
  48. 48.
    H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Kekre’s Algorithm for Vector Quantization”, International Journal of Computer Science (IJCS), Vol. 3, No. 4, pp.: 287-292, Fall 2008. Available: http:// www.waset.org/ijcs
  49. 49.
    H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Vector Quantization Techniques Based on Energy Ordering Concept” International Journal of Computing Science and Communication Technologies (IJCSCT) Volume 1, Issue 2, pp: 164-171, January 2009Google Scholar
  50. 50.
    H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation Using Vector Quantization Techniques”, Advances in Engineering Science Sect. C (3), pp.: 35-42, July-September 2008Google Scholar
  51. 51.
    H. B. Kekre, Kamal Shah, Tanuja K. Sarode, Sudeep D. Thepade, “Performance Comparison of Vecto Quantization Technique – KFCG with LBG, Existing Transforms and PCA for Face Recognition”, International Journal of Information Retrieval (IJIR), Vol. 02, Issue 1, pp.: 64-71, 2009Google Scholar
  52. 52.
    Images for testing are taken from site www.edurad.in

Copyright information

© Springer India Pvt. Ltd 2011

Authors and Affiliations

  • H. B. Kekre
    • 1
  • Saylee M. Gharge
    • 2
  • Tanuja K. Sarode
    • 3
  1. 1.MPSTME, NMIMS UniversityVile-ParleIndia
  2. 2.MPSTME, NMIMS University, V.E.S.I.TMumabiIndia
  3. 3.MPSTME, NMIMS University, TSECMumbaiIndia

Personalised recommendations