Advertisement

Heavy Ions at the LHC: A Quest for Quark-gluon Plasma

  • Rajeev S. Bhalerao
  • Rajiv V. Gavai

Abstract

Quantum chromodynamics (QCD), the theory of strong interactions, predicts a transition of the usual matter to a new phase of matter, called Quark-gluon Plasma (QGP), at sufficiently high temperatures. The non-perturbative technique of defining a theory on a spacetime lattice has been used to obtain this and other predictions about the nature of QGP. Heavy ion collisions at the Large Hadron Collider in CERN can potentially test these predictions and thereby test our theoretical understanding of confinement. This brief review aims at providing a glimpse of both these aspects of QGP.

Keywords

Large Hadron Collider Bulk Viscosity Ideal Hydro Star Collaboration Stagger Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    C. Amsler et al., Phys. Lett. B 667 (2008) 1Google Scholar
  3. 3.
    P. V. Landshoff, arXiv:0709.0395Google Scholar
  4. 4.
    U. M. Heller, MILC Collaboration, J. Phys. Conf. Ser. 9 (2005) 248CrossRefADSGoogle Scholar
  5. 5.
    W.-M. Yao et al., J. Phys. G 33 (2006) 1ADSGoogle Scholar
  6. 6.
    C. Aubin, et al., Fermilab Lattice, MILC and HPQCD Collaborations, Phys. Rev. Lett. 95 (2005) 122002CrossRefADSGoogle Scholar
  7. 7.
    M. Artuso et al., CLEO-c Collaboration, Phys. Rev. Lett. 95 (2005) 251801CrossRefADSGoogle Scholar
  8. 8.
    B. Aubert et al., BABAR Collaboration, Phys. Rev. Lett. 98 (2007) 141801CrossRefADSGoogle Scholar
  9. 9.
    Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443 (2006) 675CrossRefADSGoogle Scholar
  10. 10.
    Y. Aoki, Z. Fodor, S. D. Katz K. K. Szabo, Phys. Lett. B 643 (2006) 46Google Scholar
  11. 11.
    M. Cheng et al., Phys. Rev. D 74 (2006) 054507CrossRefADSGoogle Scholar
  12. 12.
    M. Cheng et al., Phys. Rev. D 77 (2008) 014511CrossRefADSGoogle Scholar
  13. 13.
    R. V. Gavai, S. Gupta and S. Mukherjee, Pramana 71 (2008) 487CrossRefADSGoogle Scholar
  14. 14.
    S. S. Gubser, I. R. Klebanov and A. A. Tseytlin, Nucl. Phys. B 534 (1998) 202CrossRefMathSciNetADSMATHGoogle Scholar
  15. 15.
    A. Nakamura and S. Sakai, Phys. Rev. Lett. 94 (2005) 072305CrossRefADSGoogle Scholar
  16. 16.
    P. Kovtun, D T. Son, A. O. Starinets, Phys. Rev. Lett. 94 (2005) 111601CrossRefADSGoogle Scholar
  17. 17.
    H. B. Meyer, Phys. Rev. D 76 (2007) 101701Google Scholar
  18. 18.
    R. V. Gavai and S. Gupta, Phys. Rev. D 73 (2006) 014004ADSGoogle Scholar
  19. 19.
    J. Cleymans, J. Phys. G 28 (2002) 1575ADSGoogle Scholar
  20. 20.
    V. Koch, A. Majumder and J. Randrup, Phys. Rev. Lett. 95 (2005) 182301CrossRefADSGoogle Scholar
  21. 21.
    O. Kaczmarek and F. Zantow, Phys. Rev. D 71 (2005) 114510Google Scholar
  22. 22.
    M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92 (2000) 120014; S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Phys. Rev. D 69 (2004) 094507Google Scholar
  23. 23.
    T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416Google Scholar
  24. 24.
    M. Buballa, Phys. Rept. 407 (2005) 205CrossRefADSGoogle Scholar
  25. 25.
    K. Rajagopal and F. Wilczek, in “At the Frontier of Particle Physics / Handbook of QCD”, Vol. 3, M. Shifman, ed., (World Scientific), p. 2061Google Scholar
  26. 26.
    L. McLerran and R. D. Pisarski, Nucl. Phys. A 796 (2007) 83CrossRefGoogle Scholar
  27. 27.
    R. V. Gavai, Phys. Rev. D 32 (1985) 519ADSGoogle Scholar
  28. 28.
    D. Banerjee, R. V. Gavai and S. Sharma, Phys. Rev. D 78 014506 (2008) and e-Print: arXiv:0809.4535 [hep-lat]Google Scholar
  29. 29.
    Z. Fodor and S. Katz, J. H. E. P. 0203 (2002) 014Google Scholar
  30. 30.
    C. R. Allton et al., Phys. Rev. D 66 (2002) 074507; Ph. de Forcrand and O. Philipsen, Nucl. Phys. B 642 (2002) 290; M.-P. Lombardo and M. d’Elia, Phys. Rev. D 67 (2003) 014505. C. R. Allton et al., Phys. Rev. D 68 (2003) 014507; R. V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506Google Scholar
  31. 31.
    R. V. Gavai and S. Gupta, Phys. Rev. D 71 (2005) 114014Google Scholar
  32. 32.
    R. V. Gavai and S. Gupta, e-Print: arXiv:0806.2233 [hep-lat]Google Scholar
  33. 33.
    J. D. Bjorken, in Current Induced Reactions, Lecture Notes in Physics vol. 56, New York: Springer, p. 93Google Scholar
  34. 34.
    J. D. Bjorken, Phys. Rev. D 27 (1983) 140CrossRefADSGoogle Scholar
  35. 35.
    T. Lappi and L. McLerran, Nucl. Phys. A 772 (2006) 200CrossRefGoogle Scholar
  36. 36.
    White paper by the STAR Collaboration, Nucl. Phys. A 757 (2005) 102CrossRefGoogle Scholar
  37. 37.
    M. Gyulassy, arXiv: nucl-th/0403032Google Scholar
  38. 38.
    N. Borghini, P. M. Dinh, J. Y. Ollitrault, Phys. Rev. C 64 (2001) 054901CrossRefADSGoogle Scholar
  39. 39.
    N. Borghini, P. M. Dinh, J. Y. Ollitrault, Phys. Rev. C 66 (2002) 014905ADSGoogle Scholar
  40. 40.
    R. S. Bhalerao, N. Borghini, J. Y. Ollitrault, Phys. Lett. B 580 (2004) 157; Nucl. Phys. A 727 (2003) 373; N. Borghini, R. S. Bhalerao, J. Y. Ollitrault, J. Phys. G 30 (2004) S1213Google Scholar
  41. 41.
    S. A. Voloshin, A. M. Poskanzer, R. Snellings, arXiv:0809.2949Google Scholar
  42. 42.
    R. S. Bhalerao, J. P. Blaizot, N. Borghini, J. Y. Ollitrault, Phys. Lett. B 627 (2005) 49; H.J. Drescher, A. Dumitru, C. Gombeaud, J.Y. Ollitrault, Phys. Rev. C 76 (2007) 024905Google Scholar
  43. 43.
    M. D. Oldenberg (for the STAR Collaboration), J. Phys. G 31 (2005) S437ADSGoogle Scholar
  44. 44.
    B. Müller, Acta Phys. Pol. B 38 (2007) 3705Google Scholar
  45. 45.
    See, e.g, R. D. Field, “Applications of Perturbative QCD”, Addison-Wesley Publishing Company, The Advanced Book Program, 1989; Yu. Dokshitzer, V. Khoze, A. Mueller and S. Troyan, “Basics of perturbative QCD”, Edition Frontiers 1991Google Scholar
  46. 46.
    C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68 (2003) 014008ADSGoogle Scholar
  47. 47.
    J. Adams, et al. (STAR Collaboration), Phys. Rev. Lett. 91 (2003) 072304CrossRefADSGoogle Scholar
  48. 48.
    J. Adams, et al (STAR Collaboration), Phys. Rev. Lett. 97 (2006) 162301CrossRefADSGoogle Scholar
  49. 49.
    R. Baier, D. Schiff and B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37CrossRefADSGoogle Scholar
  50. 50.
    C. Loizides, Eur. Phys. J. C 49 (2007) 339CrossRefADSGoogle Scholar
  51. 52.
    F. Karsch and R. Petronzio, Phys. Lett. B 193 (1987) 105Google Scholar
  52. 53.
    R. V. Gavai and S. Gupta, Phys. Lett. B 216 (1989) 239Google Scholar
  53. 54.
    R. V. Gavai, S. Gupta and K. Sridhar, Phys. Lett. B 227 (1989) 161Google Scholar
  54. 55.
    C. Gerschel and J. Hufner, Ann. Rev. Nucl. Part. Sci. 49 (1999) 255; Phys. Lett. B 207 (1988) 253CrossRefADSGoogle Scholar
  55. 56.
    R. Gavai, et al., Int. J. Mod. Phys. A 10 (1995) 3043CrossRefADSGoogle Scholar
  56. 57.
    B. Alessandro et al. (NA50 Collaboration), Eur. Phys. J. C 39 (2005) 335CrossRefGoogle Scholar
  57. 58.
    A. Capella and E. G. Ferreiro, Eur. Phys. J. C 42 (2005) 419 and references therein; E. L. Bratkovskaya, A. P. Kostyuk, E. Cassing and H. Stocker, Phys. Rev. C 69 (2004) 054903CrossRefADSGoogle Scholar
  58. 59.
    M. Gazdzicki and M. I. Gorenstein, Phys. Rev. Lett. 83 (1999) 4009CrossRefADSGoogle Scholar
  59. 60.
    A. Adare, et al. (PHENIX Collaboration), Phys. Rev. Lett. 98 (2007) 232301CrossRefADSGoogle Scholar
  60. 61.
    M. J. Tannenbaum, e-Print:arXiv:nucl-ex/0702028Google Scholar
  61. 62.
    H. Satz, J. Phys. G 32 (2006) R25ADSGoogle Scholar
  62. 63.
    P. Braun-Munziger anf J. Stachel, Phys. Lett. B 490 (2000) 196; R. L. Thews, M. Schroedter and J. Rafelski, Phys. Rev. C 63 (2001) 054905Google Scholar
  63. 64.
    J. Cleymans and H. Satz, Z. Phys. C 57 (1993) 135; P. Braun-Munzinger, I. Heppe, J. Stachel, e-Print: arXiv:nucl-th/9903010Google Scholar
  64. 65.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, eds. R. C. Hwa and X. N. Wang, (World Scientific, Singapore, 2004)Google Scholar
  65. 66.
    F. Carminati et al. [ALICE Collaboration], J. Phys. G 30 (2004) 1517ADSGoogle Scholar
  66. 67.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772 (2006) 167ADSGoogle Scholar
  67. 68.
    STAR Collaboration, Phys. Rev. C 72 (2005) 14904Google Scholar
  68. 69.
    T. Hirano et al., Phys. Lett. B 636 (2006) 299; T. Hirano, Prog. Theor. Phys. Suppl. 168 (2007) 347; A. Adil et al. Phys. Rev. C 74 (2006) 044905Google Scholar
  69. 70.
    O. Socolowski, F. Grassi, Y. Hama and T. Kodama, Phys. Rev. Lett. 93 (2004) 182301CrossRefADSGoogle Scholar
  70. 71.
    M. Miller and R. Snellings, arXiv:nucl-ex/0312008; B. Alver et al. [PHOBOS Collaboration], Phy. Rev. Lett. 98 (2007) 242302; R. S. Bhalerao and J. Y. Ollitrault, Phys. Lett. B 641 (2006) 260Google Scholar
  71. 72.
    R. J. Fries, J. Phys. G 34 (2007) S851ADSGoogle Scholar
  72. 73.
    P. Huovinen, Nucl. Phys. A 761 (2005) 296CrossRefGoogle Scholar
  73. 74.
    F. Karsch, D. Kharzeev, K. Tuchin, e-Print: arXiv:0711.0914 [hep-ph]Google Scholar
  74. 75.
    L. P. Csernai, J. I. Kapusta, L. D. McLerran, Phys. Rev. Lett. 97 (2006) 152303CrossRefADSGoogle Scholar
  75. 76.
    P. Danielewicz and M. Gyulassy, Phys. Rev. D 31 (1985) 53ADSGoogle Scholar
  76. 77.
    C. Eckart, Phys. Rev. 58 (1940) 919CrossRefADSMATHGoogle Scholar
  77. 78.
    L. D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959)Google Scholar
  78. 79.
    I. Müller, Z. Phys. 198 (1967) 329; Living Rev. Relativity 2 (1999) 1CrossRefADSMATHGoogle Scholar
  79. 80.
    W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118 (1979) 341CrossRefMathSciNetADSGoogle Scholar
  80. 81.
    W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151 (1983) 466CrossRefMathSciNetADSMATHGoogle Scholar
  81. 82.
    A. Muronga, Phys. Rev. Lett. 88 (2002) 062302; Phys. Rev. C 69 (2004) 034903CrossRefADSGoogle Scholar
  82. 84.
    P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, NY, 1953)MATHGoogle Scholar
  83. 85.
    B. Carter, Proc. Roy. Soc. London, Ser. A, 433 (1991) 45; N. Andersson and G. L. Comer, Living Rev. Relativity 10 (2007) 1CrossRefMathSciNetADSMATHGoogle Scholar
  84. 86.
    M. Grmela and H. C. Öttinger, Phys. Rev. bf E 56 (1997) 6620CrossRefADSGoogle Scholar
  85. 87.
    T. Koide, G. S. Denicol, P. Mota and T. Kodama, Phys. Rev. C 75 (2007) 034909ADSGoogle Scholar
  86. 88.
    P. Huovinen and D. Molnar, arXiv:0808.0953; M. Luzum and P. Romatschke, Phys. Rev. C 78 (2008) 034915; H. Song and U. W. Heinz, Phys. Rev. C 78 (2008) 024902; R. S. Bhalerao and S. Gupta, Phys. Rev. C 77 (2008) 014902; A. K. Chaudhuri, arXiv:0801.3180Google Scholar
  87. 89.
    P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99 (2007) 172301CrossRefADSGoogle Scholar
  88. 90.
    M. Laine and Y. Schroder, Phys. Rev. D 73 (2006) 085009Google Scholar
  89. 91.
    K. Dusling and D. Teaney, Phys. Rev. C 77 (2008) 034905ADSGoogle Scholar
  90. 92.
    P. Arnold, G. D. Moore and L.G. Yaffe (2000); JHEP 05 (2003) 051; P. Arnold, C. Dogan and G. D. Moore, Phys. Rev. D 74 (2006) 085021Google Scholar
  91. 96.
    N. Armesto et al. (Editors), J. Phys. G 35 (2008) 054001Google Scholar
  92. 97.
    K.J. Eskola et al., Nucl. Phys. B 570 (2000) 379CrossRefADSGoogle Scholar
  93. 98.
    K. Šafařík, AIP Conf. Proc. 739 (2005) 346Google Scholar
  94. 99.
    ALICE: Physics Performance Report, vol. I, J. Phys. G 30 (2004) 1517; vol. II, J. Phys. G 32 (2006) 1295Google Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • Rajeev S. Bhalerao
    • 1
  • Rajiv V. Gavai
    • 1
  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations