QCD at the Large Hadron Collider—Higgs Searches and Some Non-SUSY Extensions Beyond the SM

  • Prakash Mathews
  • V. Ravindran


We present a brief overview of the physics potential of the Large Hadron Collider (LHC) and the role of quantum chromody- namics (QCD) in predicting various observables at the LHC with unprecedented accuracy. We have studied the production of Standard Model (SM) Higgs boson through gluon fusion channel and various signals of physics beyond the Standard Model (BSM) restricted to non-supersymmetric scenarios. These are models with large extra-dimensions such as ADD and Randall- Sundrum models and also physics senario resulting from scale/conformal invariant sector, namely unparticle physics. We have presented QCD effects to several of the observables in these models through higher order perturbative QCD corrections and parton distribution functions. We have demonstrated how the these corrections reduce the scale ambiguities coming from renormalisation and factorisation. Our study shows that the precise and unambiguous predictions are possible for various BSM studies at the LHC.


Higgs Boson Large Hadron Collider Extra Dimension Lead Order Partonic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Europhysics Conference On High Energy Physics (EPS-HEP2007) 19–25 Jul 2007, Manchester, EnglandGoogle Scholar
  2. 2.
    A. Djouadi, Phys. Rept. 457 (2008) 1 [arXiv:hep-ph/0503172]; R. Harlander, J. Phys. G 35 (2008) 033001.CrossRefADSGoogle Scholar
  3. 3.
    S. P. Martin, arXiv:hep-ph/9709356; A. Djouadi, Phys. Rept. 459 (2008) 1 [arXiv:hep-ph/0503173]CrossRefGoogle Scholar
  4. 4.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998) 257 [arXiv:hep-ph/9804398]CrossRefADSGoogle Scholar
  5. 5.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 [arXiv:hep-ph/9905221]; W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83 (1999) 4922.MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    H. Georgi, Phys. Rev. Lett. 98 (2007) 221601 [arXiv:hep-ph/0703260].CrossRefADSGoogle Scholar
  7. 7.
    T. Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods, World Scientific Publishing Company, August 1998.Google Scholar
  8. 8.
    G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press, September 1993.Google Scholar
  9. 9.
    S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101 [arXiv:hep-ph/0403192]; A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 691 (2004) 129 [arXiv:hep-ph/0404111].MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977); H. M. Georgi, S. L. Glashow, M. E. Machacek and D. V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978); J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and C. T. Sachrajda, Phys. Lett. B 83, 339 (1979).CrossRefADSGoogle Scholar
  11. 11.
    S. Dawson, Nucl. Phys. B 359, 283 (1991); A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 264, 440 (1991); D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993); M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453, 17 (1995) [arXiv:hep-ph/9504378].CrossRefADSGoogle Scholar
  12. 12.
    R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002) [arXiv:hep-ph/0201206]; C. Anasta-siou and K. Melnikov, Nucl. Phys. B 646, 220 (2002) [arXiv:hep-ph/0207004]; V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003) [arXiv:hep-ph/0302135].CrossRefADSGoogle Scholar
  13. 13.
    V. Ravindran, Nucl. Phys. B 752, 173 (2006) [arXiv:hep-ph/0603041].MATHCrossRefADSGoogle Scholar
  14. 14.
    S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B 625 (2005) 245 [arXiv:hep-ph/0508055].CrossRefADSGoogle Scholar
  15. 15.
    V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 767 (2007) 100 [arXiv:hep-ph/0608308].CrossRefADSGoogle Scholar
  16. 16.
    T. Appelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D64 (2001) 035002.ADSGoogle Scholar
  17. 17.
    C. D. Hoyle et. al, Phys. Rev. D70 (2004) 042004.ADSGoogle Scholar
  18. 18.
    G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B544 (1999) 3.CrossRefADSGoogle Scholar
  19. 19.
    T. Han, J. D. Lykken and R-J. Zhang, Phys. Rev. D59 (1999) 105006.MathSciNetGoogle Scholar
  20. 20.
    W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83 (1999) 4922; Phys.Lett. B475 (2000) 275.CrossRefADSGoogle Scholar
  21. 21.
    Prakash Mathews, V. Ravindran, K. Sridhar and W.L. van Neerven Nucl. Phys. B713 (2005) 333.MATHCrossRefADSGoogle Scholar
  22. 22.
    Prakash Mathews, V. Ravindran and K. Sridhar, JHEP 0510 (2005) 031.CrossRefADSGoogle Scholar
  23. 23.
    Prakash Mathews, V. Ravindran, Nucl. Phys. B753 (2006) 1.MATHCrossRefADSGoogle Scholar
  24. 24.
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phys. Rev. Lett 84 (2000) 2080; H. Davoudiasl, J.L. Hewett and T.G. Rizzo ibid. Phys. Rev. D63 (2001) 075004.CrossRefADSGoogle Scholar
  25. 25.
    S. Alekhin Phys. Rev. D 68 (2003) 014002.CrossRefADSGoogle Scholar
  26. 26.
    J. Pumplin et. al., JHEP 0207 (2002) 012.CrossRefADSGoogle Scholar
  27. 27.
    A.D. Martin et. al., Eur. Phys. J. C 23 (2002) 73.CrossRefADSGoogle Scholar
  28. 28.
    M. C. Kumar, Prakash Mathews and V. Ravindran, Eur. Phys. J. C49 (2007) 599.CrossRefADSGoogle Scholar
  29. 29.
    S. I. Alekhin, Phys. Rev.D 63 (2001) 094022; CTEQ Collaboration: J. Pumplin et al., JHEP 0207 (2002) 012.CrossRefADSGoogle Scholar
  30. 30.
    A.D. Martin et. al., Eur. Phys. J. C28 (2003) 455.CrossRefADSGoogle Scholar
  31. 31.
    H. Georgi, Phys. Lett. B 650 (2007) 275.CrossRefADSGoogle Scholar
  32. 32.
    T. Banks and A. Zaks, Nucl. Phys. B 196, (1982) 189.CrossRefADSGoogle Scholar
  33. 33.
    T. van Ritbergen, J. A. M. Vermaseren, S. A. Larin Phys. Lett. B400 (1997) 379.Google Scholar
  34. 34.
    M. A. Stephanov, Phys. Rev. D 76 (2007) 035008.CrossRefADSGoogle Scholar
  35. 35.
    P. J. Fox et al., Phys. Rev. D 76 (2007) 075004; A. Delgado et al., JHEP 0710 (2007) 094; M. Bander et al., Phys. Rev. D 76 (2007) 115002.CrossRefADSGoogle Scholar
  36. 36.
    K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. Lett. 99 (2007) 051803.CrossRefADSGoogle Scholar
  37. 37.
    P. Mathews and V. Ravindran, Phys. Lett. B 657 (2007) 198.ADSGoogle Scholar
  38. 38.
    M. C. Kumar et al., Phys. Rev. D 77 (2008) 055013.CrossRefADSGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • Prakash Mathews
    • 1
  • V. Ravindran
    • 2
  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteJhunsi, AllahabadIndia

Personalised recommendations