Prospects of Searches for the Higgs Boson at the LHC

  • Bruce Mellado


One of the most exciting prospects for the Large Hadron Collider is to observe the Higgs boson. The most important experimental characteristics of the two general-purpose detectors, the CMS and ATLAS experiments are summarised. The sensitivity for the CMS and ATLAS experiments at the LHC to discover a Standard Model Higgs boson with relatively low integrated luminosity per experiment is outlined. The most relevant discovery modes are covered. A brief discussion about the expected performance from these experiments in searches for one or more of the Higgs bosons from the minimal version of the supersymmetric theories is also included.


Higgs Boson Large Hadron Collider Transverse Momentum Atlas Detector Compact Muon Solenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Glashow, Nucl. Phys. 22 (1961) 579.CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.CrossRefADSGoogle Scholar
  3. 3.
    A. Salam, Proceedings to the Eigth Nobel Symposium, May 1968, ed: N. Svartholm (Wiley, 1968) 357.Google Scholar
  4. 4.
    S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.ADSGoogle Scholar
  5. 5.
    F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321.CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    P. W. Higgs, Phys. Lett. 12 (1964) 132.ADSGoogle Scholar
  7. 7.
    P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508.CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    P. W. Higgs, Phys. Rev. 145 (1966) 1156.CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G. S. Guralnik, C.R. Hagen and T.W.B. Kibble, Phys. Rev. Lett. 13 (1964) 585.CrossRefADSGoogle Scholar
  10. 10.
    T.W.B. Kibble, Phys. Rev. 155 (1967) 1554.CrossRefADSGoogle Scholar
  11. 11.
    ALEPH Collaboration, R. Barate et al., Phys. Lett. B495 (2000) 1.Google Scholar
  12. 12.
    P. McNamara and Sau Lan Wu, Higgs Particle in the Standard Model: Experimental Results from LEP, Reports on Progress in Physics 65 (2002) 465.CrossRefADSGoogle Scholar
  13. 13.
    L. Evans and P. Bryant (editors), LHC Machine, 2008 JINST 3 S08001 (2008).Google Scholar
  14. 14.
    The LEP Higgs Working Group, Phys. Lett. B565 (2003) 61.Google Scholar
  15. 15.
    The LEP Electroweak Working Group, Scholar
  16. 16.
    CMS Collaboration, CMS PTDR V.2: Physics Performance, CERN/LHCC 2006-021.Google Scholar
  17. 17.
    ATLAS Collaboration, Detector and Physics Performance Technical Design Report, CERN-LHCC/99–14/15 (1999).Google Scholar
  18. 18.
    K. Hagiwara, D.L. Rainwater and D. Zeppenfeld, Phys. Rev. D59 (1999) 014037.Google Scholar
  19. 19.
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Phys. Rev. DD1 (2000) 093005.Google Scholar
  20. 20.
    S. Abdullin et al., Phys. Lett. B431 (1998) 410.Google Scholar
  21. 21.
    D.L. Rainwater and D. Zeppenfeld, Phys. Rev. D60 (1999) 113004.Google Scholar
  22. 22.
    N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, Phys. Lett. B503 (2001) 113.Google Scholar
  23. 23.
    S. Asai et al., Eur. Phys. J. C 32 (2004) s19–s54.CrossRefADSGoogle Scholar
  24. 24.
    B. Mellado, W. Quayle and Sau Lan Wu, Phys. Lett. B611 (2005) 60.Google Scholar
  25. 25.
    B. Mellado, W. Quayle and Sau Lan Wu, Phys. Rev. D76 (2007) 093007.Google Scholar
  26. 26.
    R.N. Cahn, S.D. Ellis, R. Kleiss and W.J. Stirling, Phys. Rev. D35 (1987) 1626.ADSGoogle Scholar
  27. 27.
    The CMS Collaboration, S. Chatrchyan et al, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004.ADSGoogle Scholar
  28. 28.
    The ATLAS Collaboration, G. Aad et al, The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003.ADSGoogle Scholar
  29. 29.
    The LHCb Collaboration, A.A. Alves Jr et al, The LHCb Detector at the LHC, 2008 JINST 3 S08005.Google Scholar
  30. 30.
    The TOTEM Collaboration, G. Anelli et al, The TOTEM Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08007.Google Scholar
  31. 31.
    The ALICE Collaboration, K. Aamodt et al, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002.ADSGoogle Scholar
  32. 32.
    ATLAS Collaboration, ATLAS Level-1 Trigger: Technical Design Report, CERN-LHCC-98-014, ATLAS-TDR-12 (1998).Google Scholar
  33. 33.
    ATLAS Collaboration, High-Level Trigger Data Acquisition and Controls, CERN-LHCC-03-016, ATLAS-TDR16 (2003).Google Scholar
  34. 34.
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a Program for Higgs Boson Decays in the Standard Model and its Supersymmetric Extention, Comp. Phys. Comm. 108 (1998) 56.MATHCrossRefADSGoogle Scholar
  35. 35.
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Phys. Rev. Lett. 40 (1978) 692.CrossRefADSGoogle Scholar
  36. 36.
    R. Cahn and S. Dawson, Phys. Lett. B136 (1984) 196.Google Scholar
  37. 37.
    G. Kane, W. Repko and W. Rolnick, Phys. Lett. B148 (1984) 367.Google Scholar
  38. 38.
    S. Dawson, Nucl. Phys. B359 (1991) 283.CrossRefADSGoogle Scholar
  39. 39.
    A. Djouadi, M. Spira and P.M. Zerwas, Phys. Lett. B264 (1991) 440.Google Scholar
  40. 40.
    D. Graudenz, M. Spira and P.M. Zerwas, Phys. Rev. Lett. 70 (1993) 1372.CrossRefADSGoogle Scholar
  41. 41.
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Nucl. Phys. B453 (1995) 17.CrossRefADSGoogle Scholar
  42. 42.
    T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. 69 (1992) 3274.CrossRefADSGoogle Scholar
  43. 43.
    A. Djouadi, Phys. Rep. 457 (2008) 1.CrossRefADSGoogle Scholar
  44. 44.
    A. Djouadi, Phys. Rep. 459 (2008) 1.CrossRefADSGoogle Scholar
  45. 45.
    S. Agostinelli et al., NIM A 506 (2003) 250–303.CrossRefADSGoogle Scholar
  46. 46.
    T. Binoth et al., E. Phys. J. C16 (2000) 311.CrossRefADSGoogle Scholar
  47. 47.
    C. Balazs, E. Berger, S. Mrenna and C.-P. Yuan, Phys. Rev. D57 (1998) 6934.ADSGoogle Scholar
  48. 48.
    C. Balazs, E. Berger, P. Nadolsky, C. Schmidt and C.-P. Yuan, Phys. Lett. B489 (2000) 157.Google Scholar
  49. 49.
    C. Balazs, E. Berger, P. Nadolsky and C.-P. Yuan, Phys. Lett. B637 (2006) 235.Google Scholar
  50. 50.
    S. Catani, M. Fontannaz, J.P. Guillet, and E. Pilon, JHEP 05 (2002) 028.CrossRefADSGoogle Scholar
  51. 51.
    Z. Nagy, Phys. Rev. Lett. 88 (2002) 122003.CrossRefADSGoogle Scholar
  52. 52.
    Z. Nagy, Phys. Rev. D68 (2003) 094002.Google Scholar
  53. 53.
    M. Duhrssen et al., Phys. Rev. D70 (2004) 113009.Google Scholar
  54. 54.
    B. Mele, P. Nason and G. Ridolfi, Nucl. Phys. B357 (1991) 409.CrossRefADSGoogle Scholar
  55. 55.
    J. Ohnemus, Phys. Rev. B50 (1994) 1931.CrossRefADSGoogle Scholar
  56. 56.
    J. Campbell, R.K. Ellis, Phys. Rev. D60 (1999) 113006.Google Scholar
  57. 57.
    S. Frixione and B.R. Webber, JHEP 0206 (2002) 029.CrossRefADSGoogle Scholar
  58. 58.
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to ppZZlll′l′, To appear in the proceedings of 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, England, 7–11 Apr 2008. e-Print: arXiv:0807.0024 [hep-ph].Google Scholar
  59. 59.
    J. Ohnemus, Phys. Rev. B44 (1991) 1403.CrossRefADSGoogle Scholar
  60. 60.
    S. Frixione, Nucl. Phys. B410 (1993) 280.CrossRefADSGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • Bruce Mellado
    • 1
  1. 1.Physics DepartmentUniversity of Wisconsin — MadisonMadisonUSA

Personalised recommendations