Advertisement

The Standard Model and Beyond-LEP/SLC/Tevatron and the LHC

  • A. Gurtu

Abstract

The current status of the standard model of particle physics is described, in particular the recent progress made in its consolidation at LEP, SLC and the Tevatron. With the advent of the LHC, at CERN, science stands poised for a generational leap in the understanding of the universe at both the sub-nuclear and the cosmological level. Thus the LHC will act both as an ultra powerful microscope and telescope simultaneously, recreating conditions as they existed soon after the Big Bang. Speculations about the supersymmetric nature of dark matter would be confronted with direct experiment. Perhaps the most exciting and unique feature of the LHC is the opportunity it will provide to directly study interactions at the tera energy scale. Something has to give at this scale, some new phenomena have to be lurking in the shadows. The presence or absence of the Higgs and SUSY will both be momentous discoveries. Of course one hopes for the totally unexpected which would be the real icing on the cake.

Keywords

Dark Matter Higgs Boson Large Hadron Collider Higgs Mass Partial Decay Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Salam, Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stockholm, 1968), 367 Google Scholar
  2. 2.
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264CrossRefADSGoogle Scholar
  3. 3.
    The ALEPH, DELPHI, L3 and OPAL Collaborations, the LEP Electroweak Working Group, the SLD Elec-troweak and Heavy Flavor Working Group, Phys. Rep. 427 (2006) 257ADSGoogle Scholar
  4. 4.
    C. Amsler et al., Phys. Lett. B667 (2008) 1Google Scholar
  5. 5.
    R.N. Cahn, Phys. Rev. D36 (1987) 2666CrossRefADSGoogle Scholar
  6. 6.
    F.A. Berends et al., “Z Physics at LEP 1”, CERN Report 89–08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 89Google Scholar
  7. 7.
    A. Borrelli et al., Nucl. Phys. B333 (1990) 357CrossRefADSGoogle Scholar
  8. 8.
    D. Bardin and G. Passarino, “Upgrading of Precision Calculations for Electroweak Observables,” hep-ph/9803425, D. Bardin, G. Passarino, and M. Grünewald, “Precision Calculation Project Report,” hep-ph/9902452Google Scholar
  9. 9.
    D. Bardin et al., Z. Phys. C44 (1989) 493; Comp. Phys. Comm. 59, (1990) 303; D. Bardin et al., Nucl. Phys. B351 (1991) 1; Phys. Lett B255 (1991) 290 and CERN-TH/6443/92 (1992); Comp. Phys. Comm. 133, (2001) 229Google Scholar
  10. 10.
    G. Burgers et al., “Z Physics at LEP 1”, CERN Report 89–08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 55Google Scholar
  11. 11.
    M. Consoli et al., “Z Physics at LEP 1”, CERN Report 89–08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C. Verzegnassi, p. 7Google Scholar
  12. 12.
    M. Bohm et al., R. Kleiss, and C. Verzegnassi ibid, p. 203Google Scholar
  13. 13.
    S. Jadach et al., R. Kleiss, and C. Verzegnassi ibid, p. 235Google Scholar
  14. 14.
    W. Beenakker, F.A. Berends, and S.C. van der Marck, Nucl. Phys. B349 (1991) 323CrossRefADSGoogle Scholar
  15. 15.
    G. Montagna et al., Nucl. Phys. B401 (1993) 3; Comp. Phys. Comm. 76 (1993) 328; Comp. Phys. Comm. 93 (1996) 120CrossRefADSGoogle Scholar
  16. 16.
    R. Assmann et al. (Working Group on LEP Energy), Euro. Phys. Jour. C6 (1999) 187CrossRefADSGoogle Scholar
  17. 17.
    R. Assmann et al. (Working Group on LEP Energy), Z. Phys. C66 (1995) 567Google Scholar
  18. 18.
    L. Arnaudon et al. (Working Group on LEP Energy and LEP Collaborations), Phys. Lett. B307 (1993) 187Google Scholar
  19. 19.
    L. Arnaudon et al. (Working Group on LEP Energy), CERN-PPE/92-125 (1992)Google Scholar
  20. 20.
    L. Arnaudon et al., Phys. Lett. B284 (1992) 431MathSciNetGoogle Scholar
  21. 21.
    R. Bailey et al., ‘LEP Energy Calibration’ CERN-SL-90-95-AP, Proceedings of the “2nd European Particle Accelerator Conference,” Nice, France, 12–16 June 1990, pp. 1765–1767Google Scholar
  22. 22.
    T. van Ritbergen and R. Stuart, Phys. Lett. B437 (1998) 201; Phys. Rev. Lett.82 (1999) 82Google Scholar
  23. 23.
    S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585; M. Steinhauser, Phys. Lett. B429 (1998) 158Google Scholar
  24. 24.
    Particle Data Group (D.E. Groom et al.), Euro. Phys. Jour. C15 (2000) 1Google Scholar
  25. 25.
    The LEP Experiments: ALEPH, DELPHI, L3, and OPAL Nucl. Instr. & Meth. A378 (1996) 101Google Scholar
  26. 26.
    D. Bardin et al., Z. Phys. C44 (1989) 493; Comp. Phys. Comm. 59 (1990) 303Google Scholar
  27. 27.
    ALEPH Collab., R. Barate et al., Phys. Lett. B526 (2002) 191, DELPHI Collab., J. Abdallah et al., Euro. Phys. Jour. C31 (2003) 421 L3 Collab., M. Acciarri et al., Phys. Lett. B517 (2001) 319 OPAL Collab., G. Abbiendi et al., Euro. Phys. Jour. C26 (2003) 479 ALEPH, DELPHI, L3 and OPAL Collaborations & the LEP Working Group for Higgs Boson Searches, Phys. Lett. B565 (2003) 61Google Scholar
  28. 28.
    F. Abe et al., Phys. Rev. D50 (1994) 2966; Phys. Rev. Lett.73 (1994) 225ADSGoogle Scholar
  29. 29.
    S. Abachi et al., Phys. Rev. Lett. 74 (1995) 2632CrossRefADSGoogle Scholar
  30. 30.
    Erich W. Varnes, “Top Quark Physics”, Plenary talk at the 34th Intern. Conf. on High Energy Physics, Philadelphia, PA, 29 July to 5 August, 2008Google Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • A. Gurtu
    • 1
  1. 1.TIFRMumbaiIndia

Personalised recommendations