Advertisement

Dark Matter and the LHC

  • Howard Baer
  • Xerxes Tata

Abstract

An abundance of astrophysical evidence indicates that the bulk of matter in the universe is made up of massive, electrically neutral particles that form the dark matter (DM). While the density of DM has been precisely measured, the identity of the DM particle (or particles) is a complete mystery. In fact, within the laws of physics as we know them (the Standard Model, or SM), none of the particles have the right properties to make up DM. Remarkably, many new physics extensions of the SM — designed to address theoretical issues with the electroweak symmetry breaking sector — require the introduction of new particles, some of which are excellent DM candidates. As the LHC era begins, there are high hopes that DM particles, along with their associated new matter states, will be produced in pp collisions. We discuss how the LHC experiments, along with other DM searches, may serve to determine the identity of DM particles and elucidate the associated physics. Most of our discussion centres around theories with weak-scale supersymmetry, and allows for several different DM candidate particles.

Keywords

Dark Matter Dark Energy High Energy Phys Weak Scale Dark Matter Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews, see e.g. C. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267 (1996) 195; A. Lahanas, N. Mavromatos and D. Nanopoulos, Int. J. Mod. Phys. D 12 (2003) 1529; M. Drees, hep-ph/0410113; K. Olive, “Tasi Lectures on Astroparticle Physics”, astro-ph/0503065; G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405 (2005) 279CrossRefADSGoogle Scholar
  2. 2.
    F. Zwicky, Helvetica Physica Acta 6 (1933) 110; see also Astrophys. J. 86 (1937) 217MATHADSGoogle Scholar
  3. 3.
    V. Rubin and W. K. Ford, Astrophys. J. 159 (1970) 359; V. Rubin, N. Thonnard and W. K. Ford, Astrophys. J. 238 (1980) 471CrossRefADSGoogle Scholar
  4. 4.
    A. Conley et al. Astrophys. J. 644 (2006) 1CrossRefADSGoogle Scholar
  5. 5.
    D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Supp., 170 (2007) 377CrossRefADSGoogle Scholar
  6. 6.
    B. Lee and S. Weinberg, Phys. Rev. Lett. 39 (1977) 165CrossRefADSGoogle Scholar
  7. 8.
    A. Kusenko, Phys. Rev. Lett. 97 (2006) 241301CrossRefADSGoogle Scholar
  8. 9.
    P. Chen, Mod. Phys. Lett. A 19 (2004) 1047MATHCrossRefADSGoogle Scholar
  9. 10.
    S. Coleman, Nucl. Phys. B 262 (1985) 263, [Erratumibid. B 269 (1986) 744CrossRefADSGoogle Scholar
  10. 11.
    A. Kusenko and M. Shaposhnikov, Phys. Lett. B 418 (1998) 46; A. Kusenko, V. Kuzmin and M. Shaposhnikov, Phys. Rev. Lett. 80 (1998) 3185Google Scholar
  11. 12.
    E. Kolb, D. Chung and A. Riotto, Phys. Rev. D 59 (1999) 023501 and hep-ph/9810361Google Scholar
  12. 13.
    R. Peccei and H. Quinn, Phys. Rev. Lett. 38 (1977) 1440 and Phys. Rev. D 16 (1977) 1791; S. Weinberg, Phys. Rev. Lett. 40 (1978) 223; F. Wilczek, Phys. Rev. Lett. 40 (1978) 279CrossRefADSGoogle Scholar
  13. 14.
    For a recent review, see e.g. S. J. Asztalos, L. Rosenberg, K. van Bibber, P. Sikivie and K. Zioutas, Ann. Rev. Nucl. Part. Sci. 56 (2006) 293CrossRefADSGoogle Scholar
  14. 15.
    For recent results, see L. Duffy et al., Phys. Rev. Lett. 95 (2005) 091304CrossRefADSGoogle Scholar
  15. 16.
    H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419; J. Ellis, J. Hagelin, D. Nanopoulos and M. Srednicki, Phys. Lett. B 127 (1983) 233; J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive and M. Srednicki, Nucl. Phys. B 238 (1984) 453CrossRefADSGoogle Scholar
  16. 17.
    G. Servant and T. Tait, New Jou. Phys. 4 (2002) 99CrossRefADSGoogle Scholar
  17. 18.
    For a review, see D. Hooper and S. Profumo, Phys. Rept. 453 (2007) 29CrossRefADSGoogle Scholar
  18. 19.
    N. Arkani-Hamed, A. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232; N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, J. High Energy Phys. 07 (2002) 034MATHMathSciNetGoogle Scholar
  19. 20.
    H. C. Cheng and I. Low, J. High Energy Phys. 0309 (2003) 051CrossRefADSGoogle Scholar
  20. 21.
    J. Hubisz and P. Meade, Phys. Rev. D 71 (2005) 035016ADSGoogle Scholar
  21. 22.
    For reviews, see M. Schmaltz, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 and M. Perelstein, Prog. Part. Nucl. Phys. 58 (2007) 247CrossRefADSGoogle Scholar
  22. 23.
    C. Hill and R. Hill Phys. Rev. D 75 (2007) 115009Google Scholar
  23. 26.
    K. Jedamzik, M. LeMoine and G. Moultaka, JCAP 0607 (2006) 010ADSGoogle Scholar
  24. 27.
    S. Heinemeyer, W. Holik, D. Stockinger, A. Weber and G. Weiglein, J. High Energy Phys. 0608 (2006) 052CrossRefADSGoogle Scholar
  25. 28.
    H. Baer and X. Tata, Weak Scale Supersymmetry: From Superfields to Scattering Events, (Cambridge University Press, 2006)Google Scholar
  26. 29.
    M. Drees, R. Godbole and P. Roy, Sparticles, (World Scientific, 2004)Google Scholar
  27. 30.
    P. Binétruy, Supersymmetry (Oxford, 2006)Google Scholar
  28. 31.
    S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981) 150CrossRefADSGoogle Scholar
  29. 32.
    B.C. Allanach, S. Kraml and W. Porod, J. High Energy Phys. 03 (2003) 016; G. Belanger, S. Kraml and A. Pukhov, Phys. Rev. D 72 (2005) 015003; S. Kraml and S. Sekmen in: Physics at TeV Colliders 2007, BSM working group report, in prep.; see http://cern.ch/kraml/comparisonCrossRefADSGoogle Scholar
  30. 33.
    M. Dine, A. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D 53 (1996) 2658; for a review, see G. Giudice and R. Rattazzi, Phys. Rept. 322 (1999) 419ADSGoogle Scholar
  31. 34.
    L. Randall and R. Sundrum, Nucl. Phys. B 557 (1999) 79; G. Giudice, M. Luty, H. Murayama and R. Rattazzi, J. High Energy Phys. 9812 (1998) 027Google Scholar
  32. 35.
    S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68 (2003) 046005; K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski and S. Pokorski, J. High Energy Phys. 0411 (2004) 076; K. Choi, A. Falkowski, H. P. Nilles and M. Olechowski, Nucl. Phys. B 718 (2005) 113; K. Choi, K-S. Jeong and K. Okumura, J. High Energy Phys. 0509 (2005) 039; H. Baer, E. Park, X. Tata and T. Wang, J. High Energy Phys. 0706 (2007) 033, and references thereinMathSciNetADSGoogle Scholar
  33. 36.
    L. Everett, I.-W. Kim and K. Zurek, arXiv:0804:0592Google Scholar
  34. 37.
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E. A. Baltz, JCAP 0407 (2004) 008ADSGoogle Scholar
  35. 38.
    G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 174 (2006) 577; Comput. Phys. Commun. 176 (2007) 367CrossRefADSMATHGoogle Scholar
  36. 39.
    IsaRED, by H. Baer, C. Balazs and A. Belyaev, J. High Energy Phys. 0203 (2002) 042CrossRefMathSciNetADSGoogle Scholar
  37. 40.
    ISAJET, by H. Baer, F. Paige, S. Protopopescu and X. Tata, hep-ph/0312045; see also H. Baer, J. Ferrandis, S. Kraml and W. Porod, Phys. Rev. D 73 (2006) 015010Google Scholar
  38. 41.
    H. Baer and M. Brhlik, Phys. Rev. D 53 (1996) 597; V. Barger and C. Kao, Phys. Rev. D 57 (1998) 3131ADSGoogle Scholar
  39. 42.
    J. Ellis, T. Falk and K. Olive, Phys. Lett. B 444 (1998) 367; J. Ellis, T. Falk, K. Olive and M. Srednicki, Astropart. Phys. 13 (2000) 181; M.E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61 (2000) 123512 and Phys. Lett. B 487 (2000) 313; A. Lahanas, D. V. Nanopoulos and V. Spanos, Phys. Rev. D 62 (2000) 023515; R. Arnowitt, B. Dutta and Y. Santoso, Nucl. Phys. B 606 (2001) 59; see also Ref. [39]Google Scholar
  40. 43.
    K. L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58 (1998) 096004; J. Feng, K. Matchev and T. Moroi, Phys. Rev. Lett. 84 (2000) 2322 and Phys. Rev. D 61 (2000) 075005; see also H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 52 (1995) 2746 and Phys. Rev. D 53 (1996) 6241; H. Baer, C. H. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. D 59 (1999) 055014; for a model-independent approach, see H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, J. High Energy Phys. 0510 (2005) 020Google Scholar
  41. 44.
    M. Drees and M. Nojiri, Phys. Rev. D 47 (1993) 376; H. Baer and M. Brhlik, Phys. Rev. D 57 (1998) 567; H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and X. Tata, Phys. Rev. D 63 (2001) 015007; J. Ellis, T. Falk, G. Ganis, K. Olive and M. Srednicki, Phys. Lett. B 510 (2001) 236; L. Roszkowski, R. Ruiz de Austri and T. Nihei, J. High Energy Phys. 0108 (2001) 024; A. Djouadi, M. Drees and J. L. Kneur, J. High Energy Phys. 0108 (2001) 055; A. Lahanas and V. Spanos, Eur. Phys. J. C 23 (2002) 185ADSGoogle Scholar
  42. 45.
    R. Arnowitt and P. Nath, Phys. Rev. Lett. 70 (1993) 3696; H. Baer and M. Brhlik, Ref. [41]; A. Djouadi, M. Drees and J. Kneur, Phys. Lett. B 624 (2005) 60CrossRefADSGoogle Scholar
  43. 46.
    C. Böhm, A. Djouadi and M. Drees, Phys. Rev. D 30 (2000) 035012; J. R. Ellis, K. A. Olive and Y. Santoso, Astropart. Phys. 18 (2003) 395; J. Edsjö, et al., JCAP 0304 (2003) 001Google Scholar
  44. 47.
    H. Baer, A. Mustafayev, E. Park and X. Tata, JCAP0701, 017 (2007)Google Scholar
  45. 50.
    J. Angle et al., Phys. Rev. Lett. 100 (2008) 021303Google Scholar
  46. 52.
    D. Feldman, Z. Liu and P. Nath, Phys. Lett. B 662 (2008) 190Google Scholar
  47. 53.
    H. Baer, C. Balazs, A. Belyaev and J. O’Farrill, JCAP 0309, (2003) 007ADSGoogle Scholar
  48. 54.
    R. Schnee, (CDMS Collaboration); A. M. Green, JCAP 0708 (2007) 022; C-L. Shan and M. Drees, arXiv:0710.4296 [hep-ph]Google Scholar
  49. 55.
    H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, JCAP 0408 (2004) 005ADSGoogle Scholar
  50. 56.
    H. Baer and J. O’Farrill, JCAP0404, 005 (2004)Google Scholar
  51. 57.
    P. Sreekumar et al. [EGRET Collaboration], Astrophys. J. 494, 523 (1998) [arXiv:astro-ph/9709257]CrossRefADSGoogle Scholar
  52. 61.
    S. Weinberg, Phys. Rev. Lett. 48 (1982) 1303; R. H. Cyburt, J. Ellis, B. D. Fields and K. A. Olive, Phys. Rev. D 67 (2003) 103521; K. Jedamzik, Phys. Rev. D 70 (2004) 063524; M. Kawasaki, K. Kohri and T. Moroi, Phys. Lett. B 625 (2005) 7 and Phys. Rev. D 71 (2005) 083502. K. Kohri, T. Moroi and A. Yotsuyanagi, Phys. Rev. D 73 (2006) 123511CrossRefADSGoogle Scholar
  53. 62.
    H. Pagels and J. Primack, Phys. Rev. Lett. 48 (1982) 223; J. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91 (2003) 011302 and Phys. Rev. D 68 (2003) 085018CrossRefADSGoogle Scholar
  54. 63.
    M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606 (2001) 518; J. Pradler and F. Steffen, hepph/ 0608344CrossRefADSGoogle Scholar
  55. 64.
    J. Feng, S. Su and F. Takayama, Phys. Rev. D 70 (2004) 075019Google Scholar
  56. 65.
    W. Buchmuller, P. Di Bari and M. Plumacher, Annal. Phys. 315 (2005) 305CrossRefADSGoogle Scholar
  57. 66.
    W. Buchmuller, L. Covi, J. Kersten, K. Schmidt-Hoberg, JCAP0611 (2006) 007; W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, J. High Energy Phys. 0703 (2007) 037Google Scholar
  58. 67.
    J. E. Kim and H. P. NillesGoogle Scholar
  59. 68.
    L. Covi, J. E. Kim and L. Roszkowski, Phys. Rev. Lett. 82 (1999) 4180; L. Covi, H. B. Kim, J. E. Kim and L.Roszkowski, J. High Energy Phys. 0105 (2001) 033CrossRefADSGoogle Scholar
  60. 69.
    A. Brandenburg and F. Steffen, JCAP0408 (2004) 008Google Scholar
  61. 70.
    G. Lazarides and Q. Shafi, Phys. Lett. B 258 (1991) 305; K. Kumekawa, T. Moroi and T. Yanagida, Prog. Theor. Phys. 92 (1994) 437; T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Phys. Lett. B 464 (1999) 12Google Scholar
  62. 72.
    H. Baer, S. Kraml, S. Sekmen and H. Summy, JHEP0803, 056 (2008)Google Scholar
  63. 73.
    H. Baer and X. Tata, Phys. Lett. B 160 (1985) 159Google Scholar
  64. 74.
    H. Baer, J. Ellis, G. Gelmini, D. V. Nanopoulos and X. Tata, Phys. Lett. B 161 (1985) 175; G. Gamberini, Z. Physik C 30 (1986) 605; H. Baer, V. Barger, D. Karatas and X. Tata, Phys. Rev. D 36 (1987) 96; H. Baer, X. Tata and J. Woodside, Phys. Rev. D 45 (1992) 142Google Scholar
  65. 75.
    H. Baer, D. Dzialo-Karatas and X. Tata, Phys. Rev. D 42 (1990) 2259ADSGoogle Scholar
  66. 76.
    H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 50 (1994) 4508ADSGoogle Scholar
  67. 77.
    H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 49 (1994) 3283ADSGoogle Scholar
  68. 78.
    H. E. Haber and D. Wyler, Nucl. Phys. B 323 (1989) 267; S. Ambrosanio and B. Mele, Phys. Rev. D 53 (1996) 2541 and Phys. Rev. D 55 (1997) 1399 [Erratumibid. D56, 3157 (1997)]; H. Baer and T. Krupovnickas, J. High Energy Phys. 0209 (2002) 038CrossRefADSGoogle Scholar
  69. 79.
    H. Baer and X. Tata, Phys. Rev. D 47 (1993) 2739ADSGoogle Scholar
  70. 80.
    H. Baer, C. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. Lett. 79 (1997) 986CrossRefADSGoogle Scholar
  71. 81.
    H. Baer, C. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. D 59 (1999) 015010ADSGoogle Scholar
  72. 82.
    H. Baer, M. Bisset, X. Tata and J. Woodside, Phys. Rev. D 46 (1992) 303ADSGoogle Scholar
  73. 83.
    H. Baer, M. Bisset, D. Dicus, C. Kao and X. Tata, Phys. Rev. D 47 (1993) 1062; H. Baer, M. Bisset, C. Kao and X. Tata, Phys. Rev. D 50 (1994) 316 Dark Matter and the LHC 203ADSGoogle Scholar
  74. 84.
    M. Muhlleitner, A. Djouadi and Y. Mambrini, Comput. Phys. Commun. 168 (2005) 46CrossRefADSGoogle Scholar
  75. 85.
    W. Porod, Comput. Phys. Commun. 153 (2003) 275CrossRefADSGoogle Scholar
  76. 86.
    T. Sjostrand, S. Mrenna and P. Skands, J. High Energy Phys. 0605 (2006) 026CrossRefADSGoogle Scholar
  77. 87.
    G. Corcella et al., J. High Energy Phys. 0101 (2001) 010CrossRefADSGoogle Scholar
  78. 88.
    F. Maltoni and T. Stelzer, J. High Energy Phys. 0302 (2003) 027; J. Alwall et al., J. High Energy Phys. 0709 (2007) 028CrossRefADSGoogle Scholar
  79. 91.
    J. Alwall et al., Comput. Phys. Commun. 176 (2007) 300Google Scholar
  80. 93.
    P. Mercadante, J. K. Mizukoshi and X. Tata, Phys. Rev. D 72 (2005) 035009; S. P. Das et al. arXiv:0708:2048 [hep-ph]; R. Kadala, P. Mercadante, J. K. Mizukoshi and X. Tata, arXiv:0803:0001 [hep-ph]ADSGoogle Scholar
  81. 94.
    H. Baer, A. Belyaev, T. Krupovnickas and X. Tata, J. High Energy Phys. 0402 (2004) 007; H. Baer, T. Krupovnickas and X. Tata, J. High Energy Phys. 0406 (2004) 061CrossRefADSGoogle Scholar
  82. 95.
    H. Baer, H. Prosper and H. Summy, Phys. Rev. D 77 (2008) 055017ADSGoogle Scholar
  83. 96.
    I. Hinchliffe et al., Phys. Rev. D 55 (1997) 5520 and Phys. Rev. D 60 (1999) 095002ADSGoogle Scholar
  84. 97.
    H. Baer, K. Hagiwara and X. Tata, Phys. Rev. D 35 (1987) 1598; H. Baer, D. Dzialo-Karatas and X. Tata, Phys. Rev. D 42 (1990) 2259; H. Baer, C. Kao and X. Tata, Phys. Rev. D 48 (1993) 5175; H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 50 (1994) 4508ADSGoogle Scholar
  85. 98.
    R. Arnowitt et al. Phys. Lett. B 639 (2006) 46 and Phys. Lett. B 649 (2007) 73Google Scholar
  86. 99.
    H. Bachacou, I. Hinchliffe and F. Paige, Phys. Rev. D 62 (2000) 015009; Atlas Collaboration, LHCC 99-14/15ADSGoogle Scholar
  87. 100.
    C. Lester and D Summers, Phys. Lett. B 463 (1999) 99; A. Barr, C. Lester and P. Stephens, J. Phys. bf G29 (2003) 2343; C. Lester and A. Barr, J. High Energy Phys. 0712 (2007) 102; W. Cho, K. Choi, Y. Kim and C. Park, arXiv:0711.4526Google Scholar
  88. 101.
    K. Kawagoe et al. Phys. Rev. D 69 (2004) 035003; S. Ambrosanio et al. J. High Energy Phys. 0101 (2001) 014ADSGoogle Scholar
  89. 103.
    J. Feng et al. Phys. Rev. D 52 (1995) 1418; M. Nojiri, K. Fujii and T. Tsukamoto, Phys. Rev. D 54 (1996) 6756MathSciNetADSGoogle Scholar
  90. 104.
    E. Baltz, M. Battaglia, M. Peskin and T. Wizansky, Phys. Rev. D 74 (2006) 103521. See also R. Arnowitt et al., arXiv:0802.2968 [hep-ph] for a similar study in the stau co-annihilation regionGoogle Scholar
  91. 105.
    H. C. Cheng, K. Matchev and M. Schmaltz, Phys. Rev. D 66 (2002) 036005ADSGoogle Scholar
  92. 106.
    T. Rizzo, Phys. Rev. D 64 (2001) 095010; C. Macescanu, C. McMullen and S. Nandi, Phys. Rev. D 66 (2002) 015009Google Scholar
  93. 107.
    See T. Tait, New Jou. Phys. 4 (2002) 99 Ref. [17]; K. Kong and K. Matchev, J. High Energy Phys. 0601 (2006) 038CrossRefADSGoogle Scholar
  94. 108.
    H. C. Cheng, K. Matchev and M. Schmaltz, Phys. Rev. D 66 (2002) 056006; A. Datta, K. Kong and K. Matchev, Phys. Rev. D 72 (2005) 096006ADSGoogle Scholar
  95. 109.
    A. Alves, O. Eboli and T. Plehn, Phys. Rev. D 74 (2006) 095010Google Scholar
  96. 110.
    A. Birkedal, A Noble, M. Perelstein and A. Spray, Phys. Rev. D 74 (2006) 035002; D. Hooper and G. Zaharijas, Phys. Rev. D 75 (2007) 035010ADSGoogle Scholar
  97. 111.
    C.-S. Chen, K. Cheung and T. C. Yuan, Phys. Lett. B 664 (2007) 158; T. Han, H. Logan and L.-T. Wang, J. High Energy Phys. 0601 (2006) 099Google Scholar
  98. 113.
    Z. Chacko, H-S. Goh and R. Harnik, Phys. Rev. Lett. 96 (2006) 231802; see E. Dolle and S. Su, Phys. Rev. D 77 (2008) 075013 for an analysis of DM in a twin-Higgs scenarioCrossRefADSGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • Howard Baer
    • 1
  • Xerxes Tata
    • 2
  1. 1.Department of PhysicsFlorida State UniversityTallahasseeUSA
  2. 2.Department of Physics and AstronomyUniversity of HawaiiHonoluluUSA

Personalised recommendations