Skip to main content

Polyploidy in Changing Environment

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

In nature, polyploidy is essential for diversity of new species (maintenance and emergence). Moreover, the environment might also play a role in creating polyploids as they have been found more in extreme environments such as high-altitude, subarctic and xeric areas (Love and Love 1949; Love 1953; Hanelt 1966; Grant 1971). It has been proposed that polyploids can establish better than diploids, and various studies on morphology, physiology and development have been conducted to verify the higher stress tolerance/resistance. It has been seen morphologically that polyploids have large cell sizes (Melaragno et al. 1993) and larger stomata (Hodgson et al. 2010). It has been suggested that genome duplication in polyploids might help to predict the water relations in them by showing changes in stomatal pore size, e.g. in Betula papyrifera (birch), polyploids have lesser stomata than diploids resulting in decreased gaseous exchange (Li et al. 1996). Furthermore, other morphological factors such as leaf, cuticle thickness and cell wall composition also play a role in maintaining water potential and gaseous exchange (Johnson 1975; Li et al. 1996). Thus, the polyploids being more adaptive than diploids are still inconclusive because of the lack of extreme experimentation. Maherali et al. (2009) studied how genome doubling affected water relations by comparing the natural diploid and tetraploid with neotetraploids (colchicine-induced) of Chamerion angustifolium (firewood). They reported that all tetraploids had large size stomata, increased stem and wall diameter and decreased specific hydraulic conductivity than the diploid ones. However, they noted that the natural tetraploids were significantly drought tolerant than diploids and neotetraploids suggesting that tolerance trait did not evolve instantaneously but evolved later on independent of the genome duplication (Maherali et al. 2009). However, Ramsey (2011) performed the transplant experiment in the field by transferring seedlings from greenhouse to dry dune habitat and noted that there were fivefold increases in survivorship of hexaploid seedlings raised from seeds collected from the field compared with the tetraploid seedlings. He also observed that there was 70% increase in survivorship of spontaneous neohexaploid seedlings. Thus, polyploids adapt better to changing environments. Furthermore, an integrative experimentation using Arabidopsis for examining the role of ecophysiological conditions on morphological alterations in polyploids for finding the mechanisms of cell size variability between diploids and tetraploids (Li et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533

    Article  PubMed  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890

    Article  CAS  PubMed  Google Scholar 

  • Brechmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15:931–942. https://doi.org/10.1093/oxfordjournals.molbev.a026009

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli M, Santantonio E, Marmottini F, Amzallag GN, Cionini PG (2006) Chromosome endoreduplication as a factor of salt adaptation in Sorghum bicolor. Protoplasma 227:113–118. https://doi.org/10.1007/s00709-005-0144-0

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Duda TF Jr (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29:2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE (2010) Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum. Antimicrob Agents Chemother 54:2455–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 105(12):944–949. https://doi.org/10.1073/pnas.0802432105

    Google Scholar 

  • Christ D, Chin JW (2008) Engineering Escherichia coli heat-resistance by synthetic gene amplification. Protein Eng Des Sel 21:121–125. https://doi.org/10.1093/protein/gzm085

    Article  CAS  PubMed  Google Scholar 

  • Cooper GM, Nickerson DA, Eichler EE (2007) Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39:S22–S29

    Article  CAS  PubMed  Google Scholar 

  • Cornman RS, Willis JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem Mol Biol 38:661–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892

    Article  CAS  PubMed  Google Scholar 

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453. https://doi.org/10.1093/gbe/evq033

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhar R, Sagesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24:1135–1153. https://doi.org/10.1111/j.1420-9101.2011.02249.x

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Gen 42:443–461

    Article  CAS  Google Scholar 

  • DudaJr TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci U S A 96:6820–6823

    Article  CAS  Google Scholar 

  • Duraisingh MT, Cowman AF (2005) Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop 94:181–190

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JA, Maerea S, de Peera YV (2009) Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Gazave E et al (2011) Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome Res 21:1626–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstein AC, Chun HJ, Grant A, Otto SP (2006) Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet 2:e145. https://doi.org/10.1371/journal. pgen.0020145

    Article  PubMed  PubMed Central  Google Scholar 

  • Gojobori J, Innan H (2009) Potential of fish opsin gene duplications to evolve new adaptive functions. Trends Genet 25:198–202

    Article  CAS  PubMed  Google Scholar 

  • Gong D, Wilson PW, Bain MM, McDade K, Kalina J, Herve´-Gre´pinet V, Nys Y, Dunn IC (2010) Gallin; an antimicrobial peptide member of anew avian defensin family, the ovodefensins, has been subject to recent gene duplication. BMC Immunol 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1971) Plant speciation, 1st edn. Columbia University Press, New York

    Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303. https://doi.org/10.1371/journal.pgen.1000303

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanelt P (1966) Polyploidie-frequenz und geographischeverbreitungbeihoherenpflanzen. BiologischeRundschau 4:183–196

    Google Scholar 

  • Hastings PJ (2007) Adaptive amplification. Crit Rev Biochem Mol Biol 42:271–283

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JG, Sharafi M, Jalili A, Diaz S, Montserrat-Marti G, Palmer C et al (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot (Lond) 105:573–584

    Article  CAS  Google Scholar 

  • Hoffmann FG, Opazo JC, Storz JF (2008) Rapid rates of lineage-specific gene duplication and deletionin the alpha-globin gene family. Mol Biol Evol 25:591–602

    Article  CAS  PubMed  Google Scholar 

  • James TC, Usher J, Campbell S, Bond U (2008) Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Curr Genet 53:139–152. https://doi.org/10.1007/s00294-007-0172-8

    Article  CAS  PubMed  Google Scholar 

  • Jiang SY, Ma Z, Ramachandran S (2010) Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 10:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239:141–151. https://doi.org/10.1016/j.jtbi.2005.08.033

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3, research0008. https://doi.org/10.1186/gb-2002-3-2-research0008

  • Labbé P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, Lenormand T (2007) Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. PLoS Genet 3:e205

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavagnino N, Serra F, Arbiza L, Dopazo H, Hasson E (2012) Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol Bioinformatics Online 8:89–104

    Article  Google Scholar 

  • Levin D (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Li W-L, Berlyn GP, Ashton PMS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83:15–20

    Article  Google Scholar 

  • Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236:579–596

    Article  CAS  PubMed  Google Scholar 

  • Libuda DE, Winston F (2006) Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443:1003–1007. https://doi.org/10.1038/nature05205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GE, Ventura M, Cellamare A, Chen L, Cheng Z, Zhu B, Li C, Song J, Eichler EE (2009) Analysis of recent segmental duplications in the bovine genome. BMC Genomics 10:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Love A (1953) Subarctic polyploidy. Hereditas 39:113–124

    Article  Google Scholar 

  • Love A, Love D (1949) The geobotanical significance of polyploidy. Portugaliae Acta (Suppl):273–352

    Google Scholar 

  • Lowe AJ, Abbott RJ (2003) A new British species, Senecioeboracensis(Asteraceae), another hybrid derivative of S. vulgaris L. and S. squalidus L. Watsonia 24:375–388

    Google Scholar 

  • Lupski JR (2007) An evolution revolution provides further revelation. BioEssays 29:1182–1184

    Article  CAS  PubMed  Google Scholar 

  • Lynch VJ (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z (2012) Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteome 75:1563–1576

    Article  CAS  Google Scholar 

  • Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731

    Article  CAS  PubMed  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of arabidopsis. Plant Cell Online 5:1661–1668

    Article  Google Scholar 

  • Moran Y, Gurevitz M (2006) When positive selection of neurotoxin genes is missing. The riddle of the sea anemone Nematostella vectensis. FEBS J 273:3886–3892

    Article  CAS  PubMed  Google Scholar 

  • Murray SA, Mihali TK, Neilan BA (2011) Extraordinary conservation, gene loss, and positive selection in the evolution of an ancient neurotoxin. Mol Biol Evol 28:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  CAS  PubMed  Google Scholar 

  • Neiman M, Olson MS, Tiffin P (2009) Selective histories of poplar protease inhibitors: elevated polymorphism, purifying selection, and positive selection driving divergence of recent duplicates. New Phytol 183:740–750

    Article  CAS  PubMed  Google Scholar 

  • Niimura Y (2009) Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 4:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403

    Article  Google Scholar 

  • Papp B, Pa’l C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197. https://doi.org/10.1038/nature01771

    Article  CAS  PubMed  Google Scholar 

  • Paulander W, Andersson DI, Maisnier-Patin S (2010) Amplification of the gene for isoleucyl-tRNAsynthetase facilitates adaptation to the fitness cost of mupirocin resistance in Salmonella enterica. Genetics 185:305–312. https://doi.org/10.1534/genetics.109.113514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry GH et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell AJ, Conant GC, Brown DE, Carbone I, Dean RA (2008) Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 9:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Pranting M, Andersson DI (2011) Escape from growth restriction in small colony variants of Salmonella typhimurium by gene amplification and mutation. Mol Microbiol 79:305–315. https://doi.org/10.1111/j.1365-2958. 2010.07458.x

    Article  PubMed  Google Scholar 

  • Preechapornkul P, Imwong M, Chotivanich K, PongtavornpinyoW DAM, Day NP, White NJ, Pukrittayakamee S (2009) Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother 53:1509–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci 108:7096–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A 98:525–530. https://doi.org/10.1073/pnas.98.2.525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111

    Article  CAS  PubMed  Google Scholar 

  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biol 331:703–710. https://doi.org/10.1016/j.crvi.2008.06.007

    Article  PubMed  Google Scholar 

  • Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588

    Article  CAS  PubMed  Google Scholar 

  • Schulenburg H, Boehnisch C (2008) Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae). BMC Evol Biol 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Segovia M (1994) Leishmania gene amplification: a mechanism of drug resistance. Ann Trop Med Parasitol 88:123–130

    Article  CAS  PubMed  Google Scholar 

  • Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006) Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and theopsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 209:3079–3090

    Article  CAS  PubMed  Google Scholar 

  • Soo VW, Hanson-Manful P, Patrick WM (2011) Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 108:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A (2009) Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc Natl Acad Sci U S A 106:14450–14455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Feyereisen R (1996) Molecular biology and evolution of resistance of toxicants. Mol Biol Evol 13:719–734

    Article  CAS  PubMed  Google Scholar 

  • Templeton TJ (2009) The varieties of gene amplification, diversification and hypervariability in the human malarial parasite, Plasmodium falciparum. Mol Biochem Parasitol 166:109–116

    Article  CAS  PubMed  Google Scholar 

  • Triglia T, Foote SJ, Kemp DJ, Cowman AF (1991) Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events. Mol Cell Biol 11:5244–5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov VV (1982) Gene amplification in prokaryotic and eukaryotic systems. Genetika 18:529–543

    CAS  Google Scholar 

  • von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96:115–139

    Article  Google Scholar 

  • Wang L, Beuerle T, Timbilla J, Ober D (2012) Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths. PLoS One 7:e31796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ES, Belov K (2012) Venom evolution through gene duplications. Gene 496:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Pecina DA, Kelly SD, Kim SH, Kemner KM, Long DT, Marsh TL (2010) Biosequestration via cooperative binding of copper by Ralstonia pickettii. Environ Technol 31:1045–1060

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Polyploidy in Changing Environment. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_7

Download citation

Publish with us

Policies and ethics