Skip to main content

Significance of Polyploidy

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

Polyploidy has played a significant role in the evolution of higher plants (Leitch and Bennett 1997), having helped in tremendously increasing the number of species and sometimes of genera on the planet Earth. It is the most rapid method known of producing radically different but vigorous and well-adapted genotypes (Stebbins 1950); for this reason, it is of great value in plant breeding, more importantly the allopolyploidy. The significance of polyploidy in the plant world can be visualized by considering its high incidence among angiosperms, including the leading commercial crops, such as wheat, sugarcane, oats, cotton, tobacco, apples, pears, plums, Rubus, etc. (Table 5.1). This incidence confers some important advantages, viz. heterosis, gene redundancy and asexual reproduction (Comia 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banaei Moghaddam AM, Fuchs J, Czauderna T, Houben A, Mette MF (2010) Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theor Appl Genet 120(2):215–226

    Article  CAS  PubMed  Google Scholar 

  • Banaei Moghaddam AM, Roudier F, Seifert M, Berard C, Magniette MLM, Ashtiyani RK, Houben A, Colot V, Mette MF (2011) Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J 67:691–700

    Article  Google Scholar 

  • Barata C, Hontoria F, Amat F, Browne R (1996) Competition between sexual and parthenogenetic Artemia: temperature and strain effects. J Exp Mar Biol Ecol 196:329–340

    Article  Google Scholar 

  • Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109:10444–10449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533

    Article  PubMed  Google Scholar 

  • Beaton MJ, Hebert PDN (1988) Geographic parthenogenesis and polyploidy in Daphnia pulex Leydig. Am Nat 132:837–845

    Article  Google Scholar 

  • Beatty RA (1957) Parthenogenesis and polyploidy in mammalian development. Cambridge University Press, London/New York

    Google Scholar 

  • Bell G (1982) The masterpiece of nature. University of California Press, Berkely

    Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA et al (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci U S A 103:12957–12958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogart JP, Elinson RP, Licht LE (1989) Temperature and sperm incorporation in polyploid salamanders. Science 246:1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Bowden WM (1940) Diploidy, polyploidy, and winter hardiness relationships in the flowering plants. Am J Bot 27:357–371

    Article  Google Scholar 

  • Brochmann C, Borgen L, Stedje B (1993) Crossing relationships and chromosome numbers of Nordic populations of Draba (Brassicaceae), with emphasis on the Draba alpina complex. Nord J Bot 13:121–147

    Article  Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L et al (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  PubMed  Google Scholar 

  • Butterfass TH (1987) Cell volume ratios of natural and of induced tetraploid and diploid flowering plants. Cytologia 52:309–316

    Article  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    CAS  PubMed  Google Scholar 

  • Chan S, Henderson I, Zhang X, Shah G, Chien J, Jacobsen S (2006) RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis. PLoS Genet 2:791–797

    CAS  Google Scholar 

  • Chao DY, Dilkes B, Luo H, Douglas A et al (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, He G, He H, Chen W, Zhu X, Liang M, Chen L, Deng XW (2010) Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol 52:971–980

    Article  CAS  PubMed  Google Scholar 

  • Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, Wang GL, Meyers BC, Jacobsen SE, Pellegrini M (2012) Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci U S A 109:12040–12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:155–168

    Article  Google Scholar 

  • Dar TH, Raina SN, Goel S (2013) Molecular analysis of genomic changes in synthetic autotetraploids Phlox drummondii Hook. Biol J Linn Soc 110:591–605

    Article  Google Scholar 

  • Darwin CR (ed) (1876) The effects of cross- and self-fertilization in the vegetable kingdom, 1st edn. John Murray, London

    Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    Article  CAS  PubMed  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J (2012) MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One 7:e39578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne F, Hebert PDN (1998) Temperature-related differences in life history characteristics between diploid and polyploid clones of the Daphnia pulex complex. Ecoscience 5:433–437

    Article  Google Scholar 

  • East EM (1908) Inbreeding in corn. Conn Agric Exp Stat Rpt 1907:419–428

    Google Scholar 

  • Falconer DS, Mackay TFC (eds) (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Fankhauser G (1945) The effects of changes in chromosome number on amphibian development. Q Rev Biol 20:20–78

    Article  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Greaves IK, Groszmann M, Ying H, Taylor JM, Peacock WJ, Dennis ES (2012) Trans chromosomal methylation in Arabidopsis hybrids. Proc Natl Acad Sci U S A 109:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A 108:2617–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Davis D, Bircher JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci U S A 106:17835–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the Molecular Basis of Heterosis. Trends Plant Sci 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Husband BC, Sabara HA (2003) Reproductive isolation between autotetraploids and their diploid progenitors in fi reweed, Chamerion angustifolium (Onagraceae). New Phytol 161:703–713

    Article  Google Scholar 

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40(11):1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeble F, Pellow C (1910) The mode of inheritance of stature and time of flowering in peas (Pisum sativum). J Genet 1:47–56

    Article  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lamkey KR, Edwards JW (1998) Heterosis: theory and estimation. In: Proceedings 34th Illinois corn breeders’ school, Urbana, IL 2–3 March 1998, pp 62–77

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establish patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch IL, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122(1):1–25

    Article  Google Scholar 

  • Lewis WH (1980) Polyploidy in species populations. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 103–144

    Chapter  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J et al (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Huang L, Xu C, Zhao Y, Zhou DX (2011) Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice. PLoS One 6:e21789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Varala K, Moose SP, Hudson ME (2012) The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements. PLoS One 7:e47043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731

    Article  CAS  PubMed  Google Scholar 

  • Mahony MJ, Robinson ES (1980) Polyploidy in the Australian leptodactylid frog genus Neobatrachus. Chromosoma 81:199–212

    Article  CAS  PubMed  Google Scholar 

  • Martin SL, Husband BC (2009) Influence of phylogeny and 1 ploidy on species ranges of North American angiosperms. J Ecol 97:913–922

    Article  Google Scholar 

  • Martins MJ, Collares-Pereira MJ, Cowx IG, Coelho MM (1998) Diploids v. triploids of Rutilus alburnoides: spatial segregation and morphological differences. J Fish Biol 52:817–828

    Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of Heterosis in crops. American Society of Agronomy, Inc/Crop Science Society of America, Inc, Madison, pp 99–118

    Google Scholar 

  • Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289(5488):2335–2338

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M, Arteaga-Vazquez M, Sidorenko L, Jeong DH, Yen Y, Green PJ, Chandler VL, Meyers BC (2008) Distinct size distribution of endogenous siRNAs in maize: evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci U S A 105:14958–14963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noggle GR (1946) The physiology of polyploidy in plants. I. Review of the literature. Lloydia 9:153–173

    CAS  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comia L, Madlungh A, Doerge RW, Colot V, Matrienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115

    Article  Google Scholar 

  • Powers L (1944) Meiotic studies of crosses between Fragaria ovales and F. ananassa. J Agr Res 69:435–448

    Google Scholar 

  • Powers L (1945) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275–280

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Richards AJ (1997) Plant breeding systems, 2nd edn. Springer/Chapman, & Hall, London

    Book  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJ (2010) Understanding natural epigenetic variation. New Phytol 187:562–564

    Article  PubMed  Google Scholar 

  • Schultz RJ (1980) Role of polyploidy in the evolution of fishes. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 313–340

    Chapter  Google Scholar 

  • Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127

    Article  CAS  PubMed  Google Scholar 

  • Semel Y et al (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A 103:12981–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton OJ (1980) Polyploidy in animal evolution: summary. See Ref. 69, pp 379–381

    Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24:875–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull GF (1908) The composition of a field of maize. Rep Am Breed Assoc 5:51–59

    Google Scholar 

  • Shull GF (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 14–48

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1980) Polyploidy: future prospects. In: Lewis WH (ed) Polyploid—biological relevance. Plenum, New York, pp 495–520

    Google Scholar 

  • Stuber CW (1999) Biochemistry, molecular biology, and physiology of heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Inc/Crop Science Society of America, Inc, Madison, pp 173–184

    Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson-Wagner RA et al (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A 103:6805–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate JA, Soltis DE, Soltis PS (2005) Polyploidy in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 371–426

    Chapter  Google Scholar 

  • Yu SB, Li JX, CG X, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1:720–731

    Article  CAS  PubMed  Google Scholar 

  • Zhao XX, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci 172:930–938

    Article  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zirkle C (1952) Early ideas on inbreeding and crossbreeding. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Significance of Polyploidy. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_5

Download citation

Publish with us

Policies and ethics