Skip to main content

Introduction to Polyploidy

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

Polyploidy refers to the presence of more than two genomes per somatic cell. Generally, the polyploid organism would have multiple sets of chromosomes or either the combination of chromosome sets found in same species or a closely related diploid species. Polyploid organisms can arise spontaneously by the chromosome duplication of somatic cells, or they can arise during meiosis due to non-disjunction of homolog chromosomes giving rise to diploid gametes (Ramsey and Schemske 2002). Polyploidy can also be induced artificially in the laboratory by drug treatment of the cells of an organism which inhibits the cell division, e.g. colchicine. In nature the polyploidy exists in organisms in either all or some somatic cells. The prevalent occurrence of polyploids suggests that polyploidy confers some selective advantages over diploidy. Some of the advantages can be enhanced vigour, increased heterozygosity, novel variation and production of new genotypes and allelic sub-functionalization (Salmon et al. 2005; Udall and Wendel 2006; Abbott et al. 2007; Anssour et al. 2009; Dar et al. 2013). The ancestral condition of any eukaryote is now suspected to have gone through polyploidization and re-polyploidization (Blanc et al. 2003; Bowers et al. 2003; Tuskan et al. 2006; Jaillon et al. 2007). The return of many genes back to single copy with disomic chromosomal inheritance and, in some cases, to smaller genome size and reduced chromosome numbers can occur through diploidization. Diploidization mechanisms include events such as chromosomal translocations, deletion of repetitive sequences and gene silencing (Pontes et al. 2004; Han et al. 2005; Gaeta et al. 2007; Mandáková et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Ireland HE, Rogers HJ (2007) Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Mol Ecol 16:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anssour S, Krugel T, Sharbel TF, Saluz HP, Bonaventure G, Baldwin IT (2009) Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot 103:1207–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babcock EB, Stebbins GL (1938) The American species of crepis. Publ Carnegie Inst Wash Publ 504:1–199

    Google Scholar 

  • Blakeslee AF (1921) Types of mutations and their possible significance in evolution. Am Nat 55:254–267

    Article  Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing chromosome doubling in plants by treatment with colchicine. Science 86:408

    Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana. II. A tetraploid Glutinosa tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics 10:278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institution Washington Publication No. 1945:564

    Google Scholar 

  • Crane MB (1940) The origin and behavior of cultivated plants. In: Huxley J (ed) The new systematics, pp 529–547

    Google Scholar 

  • Crane MB, Darlington CD (1927) The origin of new forms in Rubus. Genetica 9:241–277

    Article  Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705

    Article  CAS  PubMed  Google Scholar 

  • Dar TH, Raina SN, Goel S (2013) Molecular analysis of genomic changes in synthetic autotetraploids Phlox drummondii Hook. Biol J Linn Soc 110:591–605

    Article  Google Scholar 

  • Darlington CD (1937) Recent advances in cytology. Blakiston, Philadelphia

    Google Scholar 

  • Darlington CD (1963) Chromosome botany and the origins of cultivated plants, 2nd edn. Hafner, New York

    Google Scholar 

  • Darlington CD (1973) Chromosome botany and the origin of cultivated plants. George Allen & Unwin Ltd, London

    Google Scholar 

  • Darrow GM, Camp WH (1945) Vaccinium hybrids and the development of new horticultural material. Bull Torrey Bot Club 72:1–21

    Article  Google Scholar 

  • Darrow GM, Camp WH, Fischer HE, Dermen H (1944) Chromosome numbers in Vaccinium and related groups. Bull Torrey Bot Club 71:498–506

    Article  Google Scholar 

  • Digby L (1912) The cytology of Primula kewensis and of other related Primula hybrids. Ann Bot 26(2):357–388

    Article  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Dustin AP, Havas L, Lits F (1937) RĂ©union Assoc Anatomistes, Marseille

    Google Scholar 

  • Eigsti OJ (1947) Colchicine bibliography. Lloydia 10:65–114

    CAS  Google Scholar 

  • Fawcett JA, Maerea S, de PYV (2009) Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci 106:5737–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid Wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates RR (1909) The stature and chromosomes of Oenothera gigas, De Vries. Arch Zellforsch 3:525–552

    Google Scholar 

  • Grant V (1975) Genetics of flowering plants. Columbia University Press, New york

    Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau Kristin D, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci 106:17835–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79:433–439

    Article  CAS  PubMed  Google Scholar 

  • Han F, Fedak G, Guo W, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 170:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huskins CL (1931a) Origin of Spartina townsendii. Nature (London) 127:781

    Article  Google Scholar 

  • Huskins CL (1931b) The origin of Spartina townsendii. Genetica 12:531–538

    Article  Google Scholar 

  • Ishikawa M (1911) Cytologische studien von dahlien. Bot Mag Tokyo 25:1–8

    Article  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) French-Italian public consort.grapevine genome charact. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen CA (1928) The experimental formation of heteroploid plants in the genus Solanum. J Genet 19:133–210

    Article  Google Scholar 

  • Karpechenko D (1927) Polyploid hybrids of Raphanus sativus L.X Brassica oleracea L. Bull Appl Bot 17(4):305–408. (In Russian, English summary, pp 398–408)

    Google Scholar 

  • Karpechenko D (1928) Polyploid hybrids of Raphanus aativua L. X Brassica oleracea L. 2.indukt. Abstamm.- u. Vererb Lehre 48:1–85

    Google Scholar 

  • Kuwada Y (1911) Meiosis in the pollen mother cells of Zea Mays L. Bot Mag Tokyo 25:163–181

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levin D (2002) The role of chromosomal change in plant evolution. Oxford Univ Press, Oxford

    Google Scholar 

  • Lewis WH (1980) Polyploidy in species populations. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum, New York, pp 103–144

    Chapter  Google Scholar 

  • Löve A, Löve D (1949) The geobotanical significance of polyploidy. I. Polyploidy and latitude. Port Acta Biol Ser A1949:273–352

    Google Scholar 

  • Lutz AM (1907) A preliminary note on the chromosomes of Oenothera Lamarckiana and one of its mutants, O. gigas. Science 26:151–152

    Article  CAS  PubMed  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysaka MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  PubMed Central  Google Scholar 

  • Muntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378

    Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Ownbey M (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37:487–499

    Article  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy induced rapid genome evolution in the Wheat (Aegilops – Triticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal M, Khoshoo TN (1977) Evolution and improvement of cultivated Amaranths. VIII. Induced autotetraploidy in grain types. ZPflanzenzuecht 78:135–148

    Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A 101:8240–8245

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg O (1909) Cytologische und morphologische Studien an Drosera longifolia x rotundifolia. Kongl. Svenska Vetenskapsakad Handl 43:1–65

    Google Scholar 

  • Sakamura T (1918) Kurze Mitteilung uber die Chromosomenzah1en und die Vcrwandtschtsverhaltnisse der Triticum. Artem. Bot Mag 32:151–154

    Article  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Sax K (1922) Sterility in wheat hybrids II chromosome behaviour in partially sterile hybrids. Genetics 7:543–552

    Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in Wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock J, Thompson J et al (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Song K, PL L, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stace CE (1989) Plant taxonomy and biosystematics. E. Arnold, Cambridge

    Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Nat 74:54–66

    Article  Google Scholar 

  • Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Strother JL, Brown LE (1988) Dysploidy in hymenoxys texana (compositae). Am J Bot 75:1097–1098

    Article  Google Scholar 

  • Tackholm G (1922) Zytologische Studien uber die Gattung Rosa. Acta Horti Bergiani Bd 7(3):97–381

    Google Scholar 

  • Tahara M (1915) Cytological studies on Chrysanthemum. Bot Mag Tokyo 29:48–50

    Article  Google Scholar 

  • Thomas PT (1940a) Reproductive versatility in Rubus. 11. The chromosomes and development. J Genet 40:119–120

    Article  Google Scholar 

  • Thomas PT (1940b) The origin of new forms in Rubus. 111. The chromosome constitution of R. loganobaccus BAILEY, its parents and derivatives. Ibid 40:141–156

    Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana Reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, DĂ©jardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, LeplĂ© JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, RouzĂ© P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cotton wood Populus trichocarpa (Torr.& Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:3–14

    Article  Google Scholar 

  • Vamosi JC, Dickinson TA (2006) Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167(2):349–358

    Article  Google Scholar 

  • Wagner WH Jr (1970) Biosystematics and evolutionary noise. Taxon 19:146

    Article  Google Scholar 

  • Wang J, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17(1):115–143. https://doi.org/10.2307/2419069

    Article  Google Scholar 

  • Winge O (1917) The Chromosomes: their number and general importance. CRTrav LoborCarlsberg 13:131

    Google Scholar 

  • Winkler H (1916) Uber die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeitschi f. Bot., Bd. 8

    Google Scholar 

  • Yarnell SH (1936) Chromosome behaviour in blackberry-raspberry hybrids. J Agric Res 52:385–396

    Google Scholar 

  • Zhang H, Zhu B, Qi B, Gou X, Dong Y, Xu C, Zhang B, Huang W, Liu C, Wang X, Yang C, Zhou H, Kashkush K, Feldman M, Wendel JF, Bao L (2014) Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. Plant Cell 26:2761–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Introduction to Polyploidy. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_1

Download citation

Publish with us

Policies and ethics