The Distribution, Evolution, Structural Characteristics, and Functional Analysis of the Mariner-Like Elements in Bamboo



Most bamboo species are distinguished by the rapid growth, e.g., more than 100 cm/d in Phyllostachys pubescens. The latest research showed that the genome of P. pubescens is large and contains large and diverse families of transposable elements, which were assumed to effect on its morphogenesis and development. Mariner-like elements (MLEs) are class II transposable elements found in almost all eukaryotic genomes. We have characterized 82 amplification fragments and 79 full-length mariner-like transposases representing MLEs derived from 79 representative bamboo species from 38 genera within six subtribes of the Bambusoideae. Phylogenetic analysis of these MLE transposase sequences shows that MLEs are widespread, diverse, and abundant in the Bambusoideae. There is horizontal transfer between distantly related species or an ancestral MLE polymorphism followed by divergent evolution and stochastic loss. Two full-length MLEs were isolated with typical ITR consensus sequences of plant MLEs, intact DNA-binding motifs, and DD39D catalytic domain, and many residues are previously shown to be critical for transposase activity from P. pubescens, implying that both transposons are likely natively active. Transformation into Arabidopsis thaliana showed that the MLE transposons left the primary site, jump, and produce footprints in the A. thaliana genome. The active bamboo Tc1/mariner will provide a foundation for future comparative analyses of animal and plant elements, a new wide host range transposable element available for plant gene tagging.


Bamboo Evolution Mariner-like elements Phyllostachys pubescens Transposition 



This work was supported by the special grant from the National Natural Science Foundation of China (31270645 and 31170623), Talents Program of Natural Science Foundation of Zhejiang Province (LR12C16001), and “973” Program (2012CB723008).


  1. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36CrossRefGoogle Scholar
  2. Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM (2001) Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413:70–74CrossRefGoogle Scholar
  3. Capy P, Bazin C, Higuet D, Langin T (1998) Dynamics and evolution of transposable elements. Springer-Verlag, AustinGoogle Scholar
  4. Chen CC, Hwang JK, Yang JM (2006) (PS)2: protein structure prediction server. NAR 34:152–157CrossRefGoogle Scholar
  5. Doak TG, Doerder FP, Jahn C, Herrick G (1994) A family of transposases genes in transposons found in prokaryotes, multicellular eukaryotes and ciliated protozoans. Proc Natl Acad Sci U S A 91:942–946Google Scholar
  6. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557CrossRefGoogle Scholar
  7. Feschotte C, Wessler SR (2002) Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci U S A 99(1):280–285CrossRefGoogle Scholar
  8. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341CrossRefGoogle Scholar
  9. Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758Google Scholar
  10. Fu J (2001) Chinese Moso bamboo: its importance. Bamboo 22(5):5–7Google Scholar
  11. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709Google Scholar
  12. Geilis J, Everaert I, De Loose M (1997) Genetic variability and relationships in Phyllostachys using random amplified polymorphic DNA. In: Chapman GP (ed) The bamboos. Linnean Society symposium, vol 19. Academic, London, pp 107–124Google Scholar
  13. Group B P (2012) An updated tribal and subtribal classification of the bamboos (Poaceae: Bambusoideae). Bamboo Sci Cult 24(1):1–10Google Scholar
  14. Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome: syntenic relationships to rice and sorghum. J Integr Plant Biol 52(11):1008–1015CrossRefGoogle Scholar
  15. Hartl DL (2001) Discovery of the transposable element mariner. Genetics 157:471–476Google Scholar
  16. Hartl DL, Lohe AR, Lozovskaya ER (1997a) Modern thoughts on an ancient mariner: function, evolution, regulation. Annu Rev Genet 31:337–358CrossRefGoogle Scholar
  17. Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997b) What restricts the activity of mariner-like transposable elements? Trends Genet 13:197–201CrossRefGoogle Scholar
  18. Holligan D, Zhang XY, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228CrossRefGoogle Scholar
  19. Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675CrossRefGoogle Scholar
  20. Izsvak Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in sleeping beauty transposition. J Biol Chem 277:34581–34588CrossRefGoogle Scholar
  21. Jarvik T, Lark KG (1998) Characterization of Soymar1, a mariner-like element in soybean. Genetics 149:1569–1574Google Scholar
  22. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  23. Le QH, Wright S, Yu ZH, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:7376–7381CrossRefGoogle Scholar
  24. Lin XC, Ruan XS, Lou YF, Guo XQ, Fang W (2009) Genetic similarity among cultivars of Phyllostachys pubescens. Plant Syst Evol 277:67–73CrossRefGoogle Scholar
  25. Lohe AR, Moriyama EN, Lidholm DA, Hartl DL (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12:62–72CrossRefGoogle Scholar
  26. Naito K, Zhang F, Tsukiyama T, Saito H et al (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134CrossRefGoogle Scholar
  27. Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461CrossRefGoogle Scholar
  28. Plasterk RHA, Izsva’k Z, Ivics Z (1999) Resident aliens the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332CrossRefGoogle Scholar
  29. Richardson JM, Dawson A, O’Hagan N, Taylor P, Finnegan DJ, Walkinshaw MD (2006) Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 25:1324–1334CrossRefGoogle Scholar
  30. Robertson HM, Soto-Adames FN, Walden KO, Avancini RM, Lampe DJ (1998) The mariner transposons of animals: horizontally jumping genes. In: Syvanen M, Kido CI (eds) Horizontal gene transfer. Chapman and Hall, London, pp 268–284Google Scholar
  31. Schnable PS, Ware D, Fulton RS, Stein JC et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  32. Sinzelle L, Izsvaka Z, Ivicsa Z (2009) Molecular domestication of TEs: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093CrossRefGoogle Scholar
  33. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  34. Tung CH, Huang JW, Yang JM (2007) Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for fast protein structure database search. Genome Biol 8:R31CrossRefGoogle Scholar
  35. Watkins S, van Pouderoyen G, Sixma TK (2004) Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA. Nucleic Acids Res 32:4306–4312CrossRefGoogle Scholar
  36. Yang JM, Tung CH (2006) Protein structure database search and evolutionary classification. Nucleic Acids Res 34:3646–3659CrossRefGoogle Scholar
  37. Yang GJ, Clifford FA, Weil CF, Wessler SR (2006) A rice Tc1/MLE transposes in yeast. Plant Cell 18:2469–2478CrossRefGoogle Scholar
  38. Yang GJ, Nagel DH, Feschotte C, Hancock CN, Wessler SR (2009) Tuned for transposition: molecular determinants underlying the hyperactivity of a stowaway MITE. Science 325:1391–1394CrossRefGoogle Scholar
  39. Zhou MB, Lu JJ, Zhong H, Tang KX, Tang DQ (2010) Distribution and polymorphism of mariner-like elements in the Bambusoideae subfamily. Plant Syst Evol 289:1–11CrossRefGoogle Scholar
  40. Zhou MB, Zhong H, Tang DQ (2011) Isolation and characterization of seventy-nine full-length mariner-like transposases in the Bambusoideae subfamily. J Plant Res 124:607–617CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2018

Authors and Affiliations

  1. 1.The Nurturing Station for the State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLinAn CityChina

Personalised recommendations