Skip to main content

Cinnamyl Alcohol Dehydrogenase Deficiency Causes the Brown Midrib Phenotype in Rice

  • Chapter
  • First Online:
Book cover Biofuels: Greenhouse Gas Mitigation and Global Warming

Abstract

Because lignin encrusts lignocellulose polysaccharides, it presents obstacles to chemical pulping, forage digestion, and enzymatic hydrolysis of plant cell wall polysaccharides for biorefining. Hence, it would be beneficial for plant materials to either contain less lignin or to have lignin that is easier to remove for these processes. Grass mutants known as brown midrib (bm) mutants generally show a reduced lignin content and higher in vitro digestibility compared with wild-type plants. Several bm mutants have been isolated only from the C4 grasses, maize, sorghum, and pearl millet, but have not been detected in C3 grasses including rice (Oryza sativa). Recently, the cad2 (cinnamyl alcohol dehydrogenase 2) null mutant isolated from retrotransposon Tos17 insertion lines of O. sativa ssp. japonica cv. Nipponbare was observed to exhibit brown-colored midribs in addition to hulls and internodes, clearly showing both bm and gold hull and internode (gh) phenotypes. In addition, chemical analysis of the mutant indicated that the coloration was probably due to the accumulation of cinnamaldehyde-related structures in the lignin. The lignin content of the cad2 null mutant was lower than that of the control plants, while the enzymatic saccharification efficiency in the culm of cad2 null mutant was increased compared with that of the control plants. This mutation could be applied to breed forage paddy rice cultivars and other grass biomass plants that are suitable for use as fodder and industrial feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali F, Scott P, Bakht J, Chen Y, Lübberstedt T (2010) Identification of novel brown midrib genes in maize by tests of allelism. Plant Breed 129:724–726

    Google Scholar 

  • Barrière Y, Argillier O (1993) Brown-midrib genes of maize: a review. Agronomie 13:865–876

    Article  Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapiere C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860

    Article  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    Google Scholar 

  • Baucher M, Bernard-Vailhé MA, Chabbert B, Besle J-M, Opsomer C, Van Montagu M, Botterman J (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Gen Genomics 269:205–214

    Google Scholar 

  • Carle J, Holmgren P (2008) Wood from planted forests, a global outlook 2005–2030. Forest Prod J 58:6–18

    Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Mrita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  Google Scholar 

  • Cherney JH, Cherney DJR, Akin DE, Axtell JD (1991) Potential of brown-midrib low-lignin mutants for improving forage quality. Adv Agron 46:157–198

    Google Scholar 

  • Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4:143–146

    Article  Google Scholar 

  • Dixon RA, Reddy MSS (2003) Biosynthesis of monolignols. Genomic and reverse genetic approaches. Phytochem Rev 2:289–306

    Article  Google Scholar 

  • FAO Forest products statistics. http://www.fao.org/forestry/statistics/80938/en/.

  • Guillaumie S, Pichon M, Martinant J-P, Bosio M, Goffner D, Barrière Y (2007) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226:235–250

    Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier M-T, Schuch W (1994) Manipulation of lignin quality of downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1) - a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Google Scholar 

  • He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43:2240–2251

    Article  Google Scholar 

  • Hibino T, Takabe K, Kawazu T, Shibata D, Higuchi T (1995) Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci Biotechnol Biochem 59:929–931

    Article  Google Scholar 

  • Higuchi T, Ito T, Umezawa T, Hibino T, Shibata D (1994) Red-brown color of lignified tissues of transgenic plants with antisense CAD gene: wine-red lignin from coniferyl aldehyde. J Biotechnol 37:151–158

    Article  Google Scholar 

  • Hirochika H (2010) Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breed Sci 60:486–492

    Article  Google Scholar 

  • Hong L, Qian Q, Tang D, Wang K, Li M, Cheng Z (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236:141–151

    Article  Google Scholar 

  • Iwata N, Omura T (1971) Linkage analysis by reciprocal translocation method in rice plants (Oryza sativa L.) II linkage groups corresponding to the chromosomes 5, 6, 8, 9, 10, and 11. Sci Bull Fac Agric Kyushu Univ 25:137–153

    Google Scholar 

  • Jorgenson LR (1931) Brown midrib in maize and its linkage relations. J Am Soc Agron 23:549–557

    Article  Google Scholar 

  • Kajita S, Katayama Y, Omori S (1996) Alteration in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme a ligase. Plant Cell Physiol 37:957–965

    Article  Google Scholar 

  • Kim H, Ralph J, Lu F, Pilate G, Leplé J-C, Pollet B, Lapierre C (2002) Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem 277:47412–47419

    Article  Google Scholar 

  • Kim H, Ralph J, Lu F, Ralph SA, Boudet A-M, MacKay JJ, Sederoff RR, Ito T, Kawai S, Ohashi H, Higuchi T (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxylcinnamaldehydes and hydroxybenzaldehydes into lignins. Org Biomol Chem 1:268–281

    Google Scholar 

  • Koshiba T, Murakami S, Hattori T, Mukai M, Takahashi A, Miyao A, Hirochika H, Suzuki S, Sakamoto M, Umezawa T (2013) CAD2deficiency causes both brown midrib and gold hull and internode phenotypes in Oryza sativa L. cv. Nipponbare. Plant Biotechnol 30:365–373

    Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Google Scholar 

  • MacKay JJ, O’Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94:8255–8260

    Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  Google Scholar 

  • Morrow SL, Mascia P, Self KA, Altschuler M (1997) Molecular characterization of a brown midrib3 deletion mutation in maize. Mol Breed 3:351–357

    Google Scholar 

  • Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  Google Scholar 

  • Ookawa T, Tanaka S, Kato H, Hirasawa T (2008) The effect of the decrease in the density of lignin on the lodging resistance of the lignin deficient mutant, gh2, in rice. Abstracts of the 225th Meeting of the Crop Science Society of Japan, 210–211 (in Japanese)

    Google Scholar 

  • Park J-y, Kanda E, Fukushima A, Motobayashi K, Nagata K, Kondo M, Ohshita Y, Morita S, Tokuyasu K (2011) Contents of various sources of glucose and fructose in rice straw, a potential feedstock for ethanol production in Japan. Biomass Bioenergy 35:3733–3735

    Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet A-M (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  Google Scholar 

  • Ralph J, Lapierre C, Marita JM, Kim H, Lu F, Hatfield RD, Ralph S, Chapple C, Franke R, Hemm MR, Van Doorsselaere J, Sederoff RR, O’Malley DM, Scott JT, MacKay JJ, Yahiaoui N, Boudet A-M, Pean M, Pilate G, Jouanin L, Boerjan W (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57:993–1003

    Article  Google Scholar 

  • Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:193–204

    Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795

    Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595

    Article  Google Scholar 

  • Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238

    Google Scholar 

  • Shiba T, Kubo K, Kawai S (2007) Down regulation of cinnamyl alcohol dehydrogenase (CAD) induces increase of cell wall digestibility in rice (Oryza sativa). Proceedings of the 52nd lignin symposium, Utsunomiya, Japan, pp 18–21

    Google Scholar 

  • Tsai C-J, Popko JL, Mielke MR, Hu W-J, Podila GK, Chiang VL (1998) Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol 117:101–112

    Google Scholar 

  • Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17

    Article  Google Scholar 

  • Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier M-T, Petit-Conil M, Leplé J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864

    Article  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    Article  Google Scholar 

  • Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Article  Google Scholar 

  • Yamamura M, Noda S, Hattori T, Shino A, Kikuchi J, Takabe K, Tagane S, Gau M, Uwatoko N, Mii M, Suzuki S, Shibata D, Umezawa T (2013) Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnol 30:25–35

    Article  Google Scholar 

  • Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983

    Google Scholar 

  • Zhong R, Morrison WH III, Himmelsbach DS, Poole FL II, Ye Z-H (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umezawa, T., Sakamoto, M., Koshiba, T. (2018). Cinnamyl Alcohol Dehydrogenase Deficiency Causes the Brown Midrib Phenotype in Rice. In: Kumar, A., Ogita, S., Yau, YY. (eds) Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3763-1_21

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3761-7

  • Online ISBN: 978-81-322-3763-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics