Advertisement

Biotechnological Research in Cryptomeria japonica

  • Toru Taniguchi
Chapter

Abstract

Cryptomeria japonica (common name is sugi or Japanese cedar) is the most important forest tree species in Japan, and its wood is used for house construction, wooden ships, wooden barrels, and many articles for daily use. Artificial plantation of this species is thought to begin more than 500 years ago, and sugi currently covers 44% of Japanese artificial forest. Though discarded wood in forest by thinning or after harvesting is a valuable biomass, most of the discarded wood is left at forest, not used for materials of biomass energy. A traditional breeding program for sugi was started in the 1950s, and ca. 3600 plus trees (healthy individuals with superior growth performance) had been selected mainly in artificial forests. A current problem due to sugi is allergic reactions to pollen (pollinosis). A nationwide epidemiological survey showed that 26.5% of the Japanese population suffers from pollinosis due to sugi pollen. To address this problem, individuals with low male flower setting have been selected from plus trees. Male-sterile mutants were also discovered, and artificial crosses between the mutants and plus trees have been attempted. This review summarizes sugi breeding, concentrating on biotechnological research (DNA marker and genetic transformation). Genetic improvement in artificial forests increases their forest economic value, leading to sustainable forest management. Sustainably managed forests accumulate continuously renewable carbon in their trees, contributing to mitigation of global warming.

Keywords

Cryptomeria japonica Somatic embryogenesis Genetic transformation Cryopreservation 

References

  1. Baradant TB, Oikawa C, Nojiri M, Koda K, Sudiyani Y, Yamada T, Uraki Y (2010) Improvement of saccharification of empty fruit bunch and Japanese cedar pulps with an amphiphilic lignin derivative. Mokuzai gakkaishi 56:420–426 (in Japanese with English summary)CrossRefGoogle Scholar
  2. Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100CrossRefGoogle Scholar
  3. Forest Tree Breeding Center (2013) Status and statistics in forest tree breeding, 2012. Forest Tree Breeding Center, FFPRI, 87pp (in Japanese)Google Scholar
  4. Fukui M, Futamura N, Mukai Y, Wang Y, Nagao A, Shinohara K (2001) Ancestral MADS box genes in sugi, Cryptomeria japonica D. Don (Taxodiaceae), homologous to the B function genes in angiosperms. Plant Cell Physiol 42:566–575CrossRefGoogle Scholar
  5. Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383CrossRefGoogle Scholar
  6. Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot 87:1044–1057CrossRefGoogle Scholar
  7. Goto Y, Kondo T, Hayashi E, Kuramoto N, Takahashi M, Yasueda H (2004) Influences of genetic and environmental factors on the concentration of the allergen Cry j 1 in sugi (Cryptomeria japonica) pollen. Tree Physiol 24:409–414Google Scholar
  8. Goto-Fukuda Y, Takahashi M, Fukatsu E, Kondo T, Kurinobu S (2007) Clonal variation of allergen concentration in pollen among sugi (Cryptomeria japonica ) plus trees in Kanto breeding region. Bull For Tree Breed Center 23:37–51 (in Japanese with English summary)Google Scholar
  9. Hayashi Y (1960) Taxonomical and phytogeographical study of Japanese conifers. Norin-Shuppan, Tokyo (in Japanese)Google Scholar
  10. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  11. Hirakawa Y, Fujisawa Y, Nakada R, Yamashita K (2003) Wood properties of sugi clones selected from plus trees in Kanto breeding region. Bull FFPRI 2:31–41 (in Japanese with English summary)Google Scholar
  12. Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003a) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416CrossRefGoogle Scholar
  13. Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, Kinoshita I, Walter C, Shinohara K (2003b) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243CrossRefGoogle Scholar
  14. Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7:747–758CrossRefGoogle Scholar
  15. Jain SM, Gupta PK, Newton RJ (Eds.) (1995) Somatic embryogenesis in woody plants (vol 3). Springer, DordrechtGoogle Scholar
  16. Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25Google Scholar
  17. Kobayashi T, Eun C-H, Hanai H, Matsubayashi Y, Sakagami Y, Kamada H (1999) Phytosulphokine-α, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot. J Exp Bot 50:1123–1128Google Scholar
  18. Kojima Y (2009) Overview about utilization of woody biomass for energy source. Bull Facul Agric Niigata Univ 61:119–126 (in Japanese with English summary)Google Scholar
  19. Konagaya K, Kurita M, Tsubomura M, Hirao T, Atsushi Watanabe A, Ishii K, Taniguchi T (2013a) Induction of male sterility in transgenic sugi (Cryptomeria japonica D. Don) by barnase/barstar system. Abstracts of IUFRO Tree Biotechnology 2013, Asheville, N.C. SI.PO7Google Scholar
  20. Konagaya KI, Kurita M, Taniguchi T (2013b) High-efficiency agrobacterium-mediated transformation of Cryptomeria japonica D. Don by co-cultivation on filter paper wicks followed by meropenem treatment to eliminate agrobacterium. Plant Biotechnol 30:523–528CrossRefGoogle Scholar
  21. Kuramoto N, Kondo T, Fujisawa Y, Nakata R, Hayashi E, Goto Y (2000) Detection of quantitative trait loci for wood strength in Cryptomeria japonica. Can J For Res 30:1525–1533CrossRefGoogle Scholar
  22. Kurita M, Taniguchi T, Nakada R, Kondo T, Watanabe A (2011) Spatiotemporal gene expression profiles associated with male strobilus development in Cryptomeria japonica by suppression subtractive hybridization. Breed Sci 61:174–182CrossRefGoogle Scholar
  23. Kurita M, Konagaya KI, Watanabe A, Kondo T, Ishii K, Taniguchi T (2013) The promoter of an A9 homolog from the conifer Cryptomeria japonica imparts male strobilus-dominant expression in transgenic trees. Plant Cell Rep 32:319–328CrossRefGoogle Scholar
  24. Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Am J Bot 87:1480–1488CrossRefGoogle Scholar
  25. Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuora M, Lemmetyinen J, Keinonnen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BPFULL1:: BARNASE construct. Plant Cell Rep 24:69–78CrossRefGoogle Scholar
  26. Lemmetyinen J, Keinonen K, Sopanen T (2004a) Prevention of flowering of a tree, silver birch. Mol Breed 13:243–249CrossRefGoogle Scholar
  27. Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004b) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162CrossRefGoogle Scholar
  28. MacKay JJ, Becwar MR, Park Y-S, Corderro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9CrossRefGoogle Scholar
  29. Maruyama E, Hosoi Y (2007) Polyethylene glycol enhance somatic embryo production in Japanese cedar (Cryptomeria japonica D. Don). Propag Ornam Plants 7:57–61Google Scholar
  30. Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296CrossRefGoogle Scholar
  31. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93:7623–7627CrossRefGoogle Scholar
  32. Mishima K, Iki T, Hiraoka Y, Miyamoto N, Watanabe A (2011) The evaluation of wood properties of standing trees in Sugi (Cryptomeria japonica) plus tree clones selected in Kanto breeding region. Mokuzai Gakkaishi 57:256–264 (in Japanese with English summary)CrossRefGoogle Scholar
  33. Mishima K, Fujiwara T, Iki T, Kuroda K, Yamashita K, Tamura M, Fujisawa Y, Watanabe A (2014) Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 15:219CrossRefGoogle Scholar
  34. Mohri T, Igasaki T, Sato T, Shinohara K (2000) Expression of genes for β-glucuronidase and luciferase in three species of Japanese conifer (Pinus thunbergii, P. densiflora and Cryptomeria japonica) after transfer of DNA by microprojectile bombardment. Plant Biotechnol 17:49–54CrossRefGoogle Scholar
  35. Moriguchi Y, Tani N, Itoo S, Kanehira F, Tanaka K, Yomogida H, Taira H, Tsumura Y (2005) Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genet Genomes 1:174–183CrossRefGoogle Scholar
  36. Moriguchi Y, Yomogida H, Iwata H, Takahashi M, Taira H, Tsumura Y (2011) Paternity analysis in a progeny test of Cryptomeria japonica revealed adverse effects of pollen contamination from outside seed orchards on morphological traits. Tree Genet Genomes 7:1089–1097CrossRefGoogle Scholar
  37. Moriguchi Y, Ujino-Ihara T, Uchiyama K, Futamura N, Saito M, Ueno S, Matsumoto A, Tani M, Taira H, Shinohara K, Tsumura Y (2012) The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics 13:95CrossRefGoogle Scholar
  38. Moriguchi Y, Ueno S, Higuchi Y, Miyajima D, Itoo S, Futamura N, Shinohara K, Tsumura Y (2014) Establishment of a microsatellite panel covering the sugi (Cryptomeria japonica) genome, and its application for localization of a male-sterile gene (ms-2). Mol Breed 33:315–325CrossRefGoogle Scholar
  39. Mukai Y, Suyama Y, Tsumura Y, Kawahara T, Yoshimaru H, Kondo T, Tomaru N, Kuramoto T, Murai M (1995) A linkage map for sugi (Cryptomeria japonica) based on RFLP, RAPD and isozyme loci. Theor Appl Genet 90:835–840CrossRefGoogle Scholar
  40. Nakae K, Baba K (2010) Update on epidemiology of pollinosis in Japan: changes over the last 10 years. Clin Exp Allergy Rev 10:2–7CrossRefGoogle Scholar
  41. Niskanen A-M, Lu J, Seitz S, Keinonen K, von Weissenberg K, Pappinen A (2004) Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiol 24:1259–1265CrossRefGoogle Scholar
  42. Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K, Moriya K, Fujii F, Aoki K, Suzuki H, Ohta D, Saito K, Shibata D (2012) High-throughput cryopreservation of plant cell cultures for functional genomics. Plant Cell Physiol 53:943–952CrossRefGoogle Scholar
  43. Ohba K (1993) Clonal forestry with sugi (Cryptomeria japonica). In: Ahuja MR, Libby WJ (eds) Clonal forestry, vol II. Conservation and application. Springer, Berlin, pp 66–90Google Scholar
  44. Ohba K, Katsuta M (1991) Forest tree breeding. Bun-eido, Tokyo, 337pp (in Japanese)Google Scholar
  45. O’Malley DM, McKeand SE (1994) Marker assisted selection for breeding value in forest trees. For Genet 1:207–218Google Scholar
  46. Park YS, Pond SE, Bonga J (1993) Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding. Theor Appl Genet 86:427–436CrossRefGoogle Scholar
  47. Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterisation of the tapetum-specific Arabidopsis thalianaA9 gene. Plant Mol Biol 19:611–622CrossRefGoogle Scholar
  48. Hartley RW (1988) Barnase and barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915Google Scholar
  49. Saito M (2009) Effectiveness of an indoor miniature seed orchard arranged in lines for Cryptomeria japonica retaining male-sterile genes. J Jpn For Soc 91:168–172 (in Japanese with English summary)CrossRefGoogle Scholar
  50. Saito M, Taira H (2005) Plus tree of Cryptomeria japonica D. Don with a heterozygous male-sterility gene. J For Res 10:391–394CrossRefGoogle Scholar
  51. Scott R, Dagless E, Hodge R, Paul W, Soufleri I, Draper J (1991) Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol 17:195–207CrossRefGoogle Scholar
  52. Senda M, Kondo T (1998) Male flower setting of plus trees clones of Cryptomeria japonica in Kanto breeding region. Bull For Tree Breed Center 23:37–51 (in Japanese with English summary)Google Scholar
  53. Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, Shinohara K, Kawai S, Morohoshi N, Katayama Y, Kajita S (2008) Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Phisyol 28:21–28CrossRefGoogle Scholar
  54. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Org Cult 74:15–35CrossRefGoogle Scholar
  55. Taira H, Teranishi H, Kaneda Y (1993) A case study of male sterility in sugi (Cryptomeria japonica). J Jpn Forest Soc 75:377–379 (in Japanese with English summary)Google Scholar
  56. Taira H, Saito M, Furuta Y (1999) Inheritance of the trait of male sterility in Cryptomeria japonica. J For Res 4:271–273CrossRefGoogle Scholar
  57. Takahashi M, Iwaizumi MG, Hishi H, Kubota M, Goto-Gukuda Y, Fukatsu E, Kondo T (2007) Survey of male sterility on Sugi (Cryptomeria japonica D. Don) clones collected from Kanto breeding region and characteristics of two male-sterile clones. Bull For Tree Breed Center 23:11–36 (in Japanese with English summary)Google Scholar
  58. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15CrossRefGoogle Scholar
  59. Taniguchi T, Kondo T (2000) Difference in the ability of initiation and maintenance of embryogenic cultures among Sugi (Cryptomeria japonica D. Don) seed families. Plant Biotechnol 17:159–162CrossRefGoogle Scholar
  60. Taniguchi T, Ohmiya Y, Kurita M, Kondo T (2004) Transient expression of the green fluorescent protein gene in Cryptomeria japonica, Chamaecyparis obtusa, Pinus densiflora, Pinus thunbergii, Larix kaempferi and Acanthopanax sciadophylloides following particle bombardment. Bull For Tree Breeder Cent 20:1–8Google Scholar
  61. Taniguchi T, Ohmiya Y, Kurita M, Tsubomura M, Kondo T (2008) Regeneration of transgenic Cryptomeria japonica D. Don after Agrobacterium tumefaciens-mediated transformation of embryogenic tissue. Plant Cell Rep 27:1461–1466CrossRefGoogle Scholar
  62. Taniguchi T, Konagaya K, Kurita M, Takata N, Ishii K, Kondo T, Funahashi F, Ohta S, Kaku T, Baba K, Kaida R, Hayashi T (2012a) Growth and root sucker ability of field-grown transgenic poplars overexpressing xyloglucanase. J Wood Sci 58:550–556CrossRefGoogle Scholar
  63. Taniguchi T, Konagaya K, Kurita M, Ishii K (2012b) Somatic embryogenesis from artificial crossed immature seed in Cryptomeria japonica plus trees. Annu Rep For Tree Breed Cent 2011:88–90 (in Japanese)Google Scholar
  64. Tsubomura M, Fukatsu E, Nakada R, Fukuda Y (2012) Inheritance of male flower production in Cryptomeria japonica (sugi) estimated from analysis of a diallel mating test. Ann For Sci 69:867–875CrossRefGoogle Scholar
  65. Tsubomura M, Fukatsu E, Watanabe A (2013) Evaluation of male flower production in Sugi (Cryptomeria japonica) plus tree clones selected from a kanto breeding region. J Jpn For Soc 95:156–162 (in Japanese with English summary)CrossRefGoogle Scholar
  66. Tsumura Y (2011) Cryptomeria. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, forest trees. Springer, BerlinGoogle Scholar
  67. Uchiyama K, Iwata H, Moriguchi Y, Ujino-Ihara T, Ueno S, Taguchi Y, Tubomura M, Mishima K, Iki T, Watanabe A, Futamura N, Shinohara K, Tsumura Y (2013) Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PLoS One 8:e79866CrossRefGoogle Scholar
  68. Ujino-Ihara T, Iwata H, Taguchi Y, Tsumura Y (2012) Identification of QTLs associated with male strobilus abundance in Cryptomeria japonica. Tree Genet Genomes 8:1319–1329CrossRefGoogle Scholar
  69. Walden AR, Walter C, Gardner RC (1999) Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes. Plant Physiol 121:1103–1116CrossRefGoogle Scholar
  70. Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH (2007) Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Mol Breed 19:69–85CrossRefGoogle Scholar
  71. Yoshimaru H, Ohba K, Tsurumi K, Tomaru N, Murai M, Mukai Y, Suyama Y, Tsumura Y, Kawahara T, Sakamaki Y (1998) Detection of quantitative trait loci for juvenile growth, flower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theor Appl Genet 97:45–50CrossRefGoogle Scholar
  72. Yu X, Kikuchi A, Matsunaga E, Kawaoka A, Ebinuma H, Watanabe KN (2013) A field trial to assess the environmental biosafety of codA-transgenic Eucalyptus camaldulensis cultivation. Plant Biotechnol 30:357–363CrossRefGoogle Scholar
  73. Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BY, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MA (2012) Control of pollen mediated gene flow in transgenic trees. Plant Physiol 159:1319–1334CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2018

Authors and Affiliations

  1. 1.Forest Bio-Research CenterForestry and Forest Products Research InstituteHitachiJapan

Personalised recommendations