Skip to main content

Agro-industrial Lignocellulosic Waste: An Alternative to Unravel the Future Bioenergy

  • Chapter
  • First Online:
Biofuels: Greenhouse Gas Mitigation and Global Warming

Abstract

Dwindling reserves of fossil fuel and petroleum derivatives, rising oil prices, concern about environmental impact, and supply insecurity demand environmentally sustainable energy sources. Production of fuels and chemicals through microbial fermentation of plant material that uses renewable feedstock is a desirable alternative to petrochemicals. Lignocellulose represents the most widespread and abundant source of carbon in nature and is the only source that could provide a sufficient amount of feedstock to satisfy the world’s energy and chemical needs in a renewable manner. Typically, most of the agricultural lignocellulosic biomass is comprised of about 10–25% lignin, 20–30% hemicellulose, and 40–50% cellulose. The processing and utilization of this substrate are complex, differing in many aspects from crop-based ethanol production. Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol-producing microorganism, able to ferment all sugars present in the feedstock. Thus, an obvious target in the field of metabolic engineering has been the tailoring of such a microorganism, combining advantageous traits from different microorganisms with classical procedures such as random mutagenesis. Nowadays research is being directed to develop metabolically and genetically engineered Saccharomyces strains and other ethanol-fermenting microbes that has the potential to utilize wide range of substrates including pentose and hexose sugars, ability for direct and efficient ethanol production from cellulosic materials, and ability to tolerate ethanol stress. Although it is still in its infancy, metabolic engineering and synthetic biology offer great potential to overcome the challenges associated with lignocellulose bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  • Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, Horn SJ, Eijsink VGH, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111(17):6287–6292

    Article  Google Scholar 

  • Alkasrawi M, Eriksson T, Borjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G (2003) The effect of tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym Microb Technol 33:71–78

    Article  Google Scholar 

  • Barakat A, de Vries H, Rouau X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries. Bioresour Technol 134:362–373

    Article  Google Scholar 

  • Betz C, Schlenstedt G, Bailer SM (2004) Asrp, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J Biol Chem 279:28174–28181

    Article  Google Scholar 

  • Brown RM Jr (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71(5):767–775

    Article  Google Scholar 

  • Cannella D, Hsieh CW, Felby C, Jorgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(1):261

    Article  Google Scholar 

  • Chandel AK, Chan E, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chundawat SPS, Bals B, Campbell T, Sousa L, Gao D, Jin M, Eranki P, Garlock R, Teymouri F, Balan V, Dale BE (2013) Primer on ammonia fiber expansion pretreatment. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 169–200

    Chapter  Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose: theory and practice. Springer, Dordrecht/Heidelberg/New York

    Book  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 111(24):8931–8936

    Google Scholar 

  • Culbertson A, Jin M, da Costa SL, Dale BE, Balan V (2013) In-house cellulase production from AFEXTM pretreated corn stover using Trichoderma reesei RUT C-30. RSC Adv 3(48):25960–25969

    Article  Google Scholar 

  • da Silva (2016) Adding value to agro-industrial wastes. Ind Chem 2:2

    Article  Google Scholar 

  • de Frias JA, Feng H (2013) Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water. Green Chem 15(4):1067–1078

    Article  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154

    Article  Google Scholar 

  • den Haan R, van Rensburg E, Rose SH, van Gorgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  Google Scholar 

  • Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:366–383

    Article  Google Scholar 

  • Dixon RA (2013) Microbiology: break down the walls. Nature 493:36–37

    Article  Google Scholar 

  • Dombek KM, Ingram LO (1986) Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 51:197–200

    Google Scholar 

  • Dominguez-Bocanegra AR, Torres-Munoz JA, Lopez RA (2015) Production of bioethanol from agro-industrial wastes. Fuel 149:85–89

    Article  Google Scholar 

  • Dufey A (2006) Biofuels production, trade and sustainable development: emerging issues, Environmental economics programme, sustainable markets discussion paper no. 2. International Institute for Environment and Development (IIED), London

    Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatments technologies. Bioresour Technol 96:2019–2025

    Article  Google Scholar 

  • Elia TP, Jose MO, Mercedes B, Lisbeth O (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100(6):1122–1131

    Article  Google Scholar 

  • European Biofuels Technology Platform (2015) Newsletter 21, January 2015

    Google Scholar 

  • Gibson LG (2012) The hierarchical structure and mechanics of plant materials. J Royal Soc Interface 9:2749–2766

    Article  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasic R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101:4842–4850

    Article  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sust Energy Rev 42:712–725

    Article  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science 315:804–807

    Article  Google Scholar 

  • Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R (2014) Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:798683

    Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    Google Scholar 

  • Jeffries TW, Jin Y-S (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:222–268

    Google Scholar 

  • Jin M, Gunawan C, Balan V, Dale BE (2012) Consolidated bioprocessing (CBP) of AFEX™-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 109(8):1929–1936

    Article  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442(2):241–252

    Article  Google Scholar 

  • Kaur B, Sharma M, Soni R, Oberoi HS, Chadha BS (2013) Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Appl Biochem Biotechnol 163:577–591

    Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48(4–5):408–415

    Article  Google Scholar 

  • Konda N, Shi J, Singh S, Blanch H, Simmons B, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7(1):86

    Article  Google Scholar 

  • Kumagai A, Kawamura S, Lee SH, Endo T, Rodriguez M Jr, Mielenz JR (2014) Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling. Bioresour Technol 162:89–95

    Article  Google Scholar 

  • Kumar R, Wyman CE (2013) Physical and chemical features of pretreated biomass that influence macro-/micro-accessibility and biological processing. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 281–310

    Chapter  Google Scholar 

  • Kumar R, Wyman CE (2014) Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111(7):1341–1353

    Article  Google Scholar 

  • Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32:517–526

    Article  Google Scholar 

  • Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  Google Scholar 

  • Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2013) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111(3):485–492

    Article  Google Scholar 

  • Li J, Lin J, Zhou P, Wu K, Liu H, Xiong C, Gong Y, Xiao W, Liu Z (2014) One-pot simultaneous saccharification and fermentation: a preliminary study of a novel configuration for cellulosic ethanol production. Bioresour Technol 161:171–178

    Article  Google Scholar 

  • Liu H, Zhu JY, Fu S (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238

    Article  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    Article  Google Scholar 

  • McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10(2–3):295–302

    Article  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Gholam N, Gholami MH, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  • Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sust Energy Rev 42:1349–1361

    Article  Google Scholar 

  • Muller G, Várnai A, Johansen KS, Eijsink VGH, Horn SJ (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol Biofuels 8(1):1–9

    Article  Google Scholar 

  • Nguyen TY, Cai CM, Kumar R, Wyman CE (2015a) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Chem Sus Chem 8(10):1716–1725

    Article  Google Scholar 

  • Nguyen TY, Cai CMZ, Osman O, Kumar R, Wyman CE (2015b) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem. https://doi.org/10.1039/C5GC01977

  • Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  Google Scholar 

  • Oberoi HS, Babbar N, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudariavzavii. Indian J Biotechnol 39:557–566

    Google Scholar 

  • Oh EJ, Ha SJ, Kim SR, Lee WH, Galazka JM, Cate JHD, Jin YS (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226–234

    Article  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    Google Scholar 

  • Okamoto K, Uchii A, Kanawaku R, Yanase H (2014) Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springerplus 3:121

    Article  Google Scholar 

  • Olson DG, McBride JE, Joe Shaw A, Lynd L (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568

    Article  Google Scholar 

  • Podkaminer KK, Shao X, Hogsett DA, Lynd LR (2011) Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50°C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol Bioeng 108(6):1268–1278

    Article  Google Scholar 

  • Rogers PL, Lee KJ, Tribe DE (1996) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol Lett 1(4):165–170

    Article  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  Google Scholar 

  • Saha BC (2005) Enzymes as biocatalysts for conversion of lignocellulosic biomass to fermentable sugars. In: Hou CT (ed) Handbook of industrial biocatalysis. CRC Press LLC, West Palm Beach

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  Google Scholar 

  • Scott BR, Huang HZ, Frickman J, Halvorsen R, Johansen KS (2016) Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotechnol Lett 38(3):425–434

    Article  Google Scholar 

  • Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L (2011) Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol 102(17):8040–8045

    Article  Google Scholar 

  • Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS (2011) Evaluation of glycosyl hydrolyses in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 163(5):577–591

    Article  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105(37):13769–13774

    Article  Google Scholar 

  • Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using [gamma]-valerolactone for concentrated sugar production. Green Chem 18:937–943

    Article  Google Scholar 

  • Singh LK, Majumder CB, Ghosh S (2012) Bioconversion of hemicellulosic fraction of perennial kans grass (Saccharum spontaneum) biomass to ethanol by Pichia stipitis: a kinetic study. Int J Green Energy 9:5

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19

    Article  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, London

    Google Scholar 

  • Wiselogel JT, Johnsson D (1996) Biomass feed- stock resources and composition. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC

    Google Scholar 

  • Wu M, Yan ZY, Zhang XM, Xu F, Sun RC (2016) Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Bioresour Technol 200:23–28

    Article  Google Scholar 

  • Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS, Ladisch MR, Mosier NS, Lee YY, Gupta R, Thomas SR, Hames BR, Warner R, Kumar R (2013) Comparative performance of leading pretreatment technologies for biological conversion of corn stover, poplar wood, and switchgrass to sugars. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, London, pp 239–259

    Chapter  Google Scholar 

  • Xin FX, Wu YR, He JZ (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80:4771–4778

    Article  Google Scholar 

  • Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31(6):754–763

    Article  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  Google Scholar 

  • Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi V. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maheshwari, N.V. (2018). Agro-industrial Lignocellulosic Waste: An Alternative to Unravel the Future Bioenergy. In: Kumar, A., Ogita, S., Yau, YY. (eds) Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3763-1_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3761-7

  • Online ISBN: 978-81-322-3763-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics