Advertisement

Latest and Future Prospects of Bismith Oxyhalides

  • Mohammed A. GondalEmail author
  • Chang Xiaofeng
  • Mohamed A. Dastageer
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 76)

Abstract

This chapter mainly describes the future prospect of bismuth oxylalides in terms of their novel preparation techniques, and its possible applications in various other fields. It also describes the possible ways to improve the functionality by synthesizing multidimensional shape dependant materials and heterojunction structures.

Keywords

Multidimensional shape dependant materials Heterojunction structures Novel synthesis techniques 

References

  1. 1.
    Gondal MA, Adeseda AA, Rashid SG, Hameed A, Aslam M, Ismail IMI, Baig U, Dastageer MA, Al-Arfaj AR, Rehman A (2016) Facile synthesis, characterization and photocatalytic performance of Au–Ag alloy nanoparticles dispersed on graphitic carbon nitride under visible light irradiations. J Mol Catal A 423:114–125CrossRefGoogle Scholar
  2. 2.
    Seddigi ZS, Gondal MA, Rashid SG, Abdulaziz MA, Ahmed SA (2016) Facile synthesis and catalytic performance of nanosheet—nanorods g-C3N4-Bi2WO6 heterojunction catalyst and effect of silver nanoparticles loading on bare Bi2WO6 and g-C3N4-Bi2WO6 for N-deethylation process. J Mol Catal A 420:167–177CrossRefGoogle Scholar
  3. 3.
    Aslam M, Tahir Soomro M, Ismail Iqbal M I, Qari Huda A, Gondal MA, Hameed A (2015) The facile synthesis, characterization and evaluation of photocatalytic activity of bimetallic FeBiO3 in natural sunlight exposure. RSC Adv 2015(5):102663CrossRefGoogle Scholar
  4. 4.
    Ahmad N, Gondal MA, Sheikh AK (2016) Comparative study of different solar based photo catalytic reactors for disinfection of contaminated water. Desalin Water Treat 57(1):213–220Google Scholar
  5. 5.
    Seddigi ZS, Ahmed SA, Bumajdad A, Gondal MA, Danish EY, Shawky AM, Yarkandi NH (2016) Photocatalytic degradation of tert-butyl alcohol and tert-butyl formate using palladium-doped zinc oxide nanoparticles with UV-irradiation. Desalin Water Treat 57/2Google Scholar
  6. 6.
    Gondal MA, Dastageer MA, Khalil A, Rashid SG, Baig U (2015) Photo-catalytic deactivation of sulfate reducing bacteria—a comparative study with different catalysts and the preeminence of Pd-loaded WO3 nanoparticles. RSC Adv 2015(5):51399–51406CrossRefGoogle Scholar
  7. 7.
    Aslam M, Qamar MT, Tahir Soomro M, Ismail IMI, Salah N, Almeelbi T, Gondal MA, Hameed A (2016) The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Appl Catal B 180:391–402Google Scholar
  8. 8.
    Baig U, Gondal MA, Alam MF, Laskar AA, Alam M, Younus H (2015) Enzyme immobilization and molecular modeling studies on organic-inorganic polypyrrole titanium(IV) phosphate nanocomposite. New J Chem 2015(39):6976–6986CrossRefGoogle Scholar
  9. 9.
    Owolabi TO, Gondal MA (2015) Estimation of surface tension of methyl esters biodiesels using computational intelligence technique. Appl Soft Comput J 37:227–233CrossRefGoogle Scholar
  10. 10.
    Aslam M, Tahir Soomro M, Ismail IMI, Salah N, Gondal MA, Hameed A (2015) Sunlight mediated removal of chlorophenols over tungsten supported ZnO: electrochemical and photocatalytic studies. J Environ Chem Eng 3(3):1901–1911Google Scholar
  11. 11.
    Baig U, Rao RAK, Khan AA, Sanagi MM, Gondal MA (2015) Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole-titanium(IV) phosphate nanocomposite. Chem Eng J 280(2015):494–504CrossRefGoogle Scholar
  12. 12.
    Rashid SG, Gondal MA, Hameed A, Aslam M, Dastageer MA, Yamani ZH, Anjum DH (2015) Synthesis, characterization and visible light photocatalytic activity of Cr3+ and Ce3+ co-doped TiON for the degradation of humic acid. RSC Adv 5(41):32323–32332, 9Google Scholar
  13. 13.
    Randhawa MA, Gondal MA, AL-Zahrani HJ, Rashid SG, Ali MA (2015) Synthesis, morphology and antifungal activity of nano particulated amphotericin-B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida-biofilm. J Environ Sci Health A 50:119–124Google Scholar
  14. 14.
    Chang X, Zheng J, Gondal MA, Ji G (2015) Photocatalytic conversion of CO2 into value-added hydrocarbon (methanol) with high selectivity over ZnS nanoparticles driven by 355-nm pulsed laser. Res Chem Intermed 41:739–747Google Scholar
  15. 15.
    Gondal MA, Adesida AA, Rashid SG, Shi S, Khan R, Yamani ZH, Shen K, Xu Q, Seddigi ZS, Chang X (2015) Preparation of WO3/g-C3N4 composites and their enhanced photodegradation of Rhodamine B in aqueous solution under visible light irradiation114(1). React Kinet, Mech Catal 114(1):357–367CrossRefGoogle Scholar
  16. 16.
    Seddigi ZS, Ahmed SA, Bumajdad A, Danish EY, Gondal MA, Shwaky AM, Soylak M (2015) The efficient photocatalytic degradation of methyl tert-butyl ether under Pd/ZnO and visible light irradiation. Photochem Photobiol 91:265–271CrossRefGoogle Scholar
  17. 17.
    Ji G, Liu Y, Zhu L, Wang J, Zhang B, Chang X, Gondal MA, Dastageer MA (2014) High-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol. RSC Adv 4(100):56961–56969Google Scholar
  18. 18.
    Aslam HM, Ismail MI, Gondal MA (2014) Sunlight assisted photocatalytic mineralization of nitrophenol isomers over W6+ impregnated ZnO. Appl Catal B, Environ 160–161(1):227–239Google Scholar
  19. 19.
    Gondal MA, Fajgar R, Chang X, Shenb K, Xu Q (2014) ArF excimer laser-induced deposition of Ag/C nanocomposite thin films in the presence of n-Hexane. Appl Surf Sci 311(2014):95–100CrossRefGoogle Scholar
  20. 20.
    Shen K, Gondal MA, Chang X, Ali MA (2014) Batch and column adsorption of dye contaminants using a low-cost sand adsorbent. Res Chem Intermed 113(Sept issue)Google Scholar
  21. 21.
    Wang J, Ji G, Liu Y, Gondal MA, Chang X (2014) Cu2O/TiO2 hetero structure nanotube arrays prepared by an electro-deposition method exhibiting enhanced photo-catalytic activity for CO2 reduction to methanol. Catal Commun 46:17–21Google Scholar
  22. 22.
    Shen K, Gondal MA, Rashid RG, Shi S, Wang S, Sun J, Su Q (2014) Preparation of ternary Ag/Ag3PO4/g‐C3N4 hybrid photocatalysts and their enhanced photocatalytic activity driven by visible light. Chin J Catal 35:78–84Google Scholar
  23. 23.
    Gondal MA, Siddiqui MN (2014), Nano-catalysts supported laser-induced photocatalytic degradation of MTBE. J Environ Sci Health A 49(1):52–58Google Scholar
  24. 24.
    Hameed A, Aslam M, Ismail MI, Gondal MA (2014) Photocatalytic conversion of methane into methanol: performance of silver impregnated WO3. Appl Catal A 470(2014):327–335CrossRefGoogle Scholar
  25. 25.
    Ali Z, Aslam M, Ismail IM, Hameed A, Hussain ST, Chaudhry MN, Gondal MA (2014) Syntheis, characterization and photocatalytic activity AL2O3-TiO2-based composites. J Environ Sci Health A 49(1):125–134CrossRefGoogle Scholar
  26. 26.
    Gondal MA, Ali MA, Dastageer MA, Chang C (2013) CO2 conversion into methanol using granular silicon carbide (α6H–SiC): a comparative evaluation of 355 nm laser and xenon mercury broad band radiation sources. Catal Lett 193:108–117Google Scholar
  27. 27.
    Li L, Gondal MA, Sun J, Shen K, Chang X (2013) Significant enhancement in removal of Methyl Orange from aqueous solution in the presence of Rhodamine B using Ag3PO4 photo-catalyst. Energy Environ Focus 2:188–194Google Scholar
  28. 28.
    Gondal MA, Rashid SG, Dastageer MA, Zubair SM, Ali MA, Lienhard JH, McKinley GH, Varanasi KK (2013) Sol-gel synthesis of Au/Cu–TiO2 nanocomposite and their morphological and optical properties. IEEE J Photonics 5(3):2013CrossRefGoogle Scholar
  29. 29.
    Gondal MA, Dastageer MA, Rashid SG, Zubair SM, Ali MA, Anjum DH, Lienhard JH, McKinley GH, Varanassi K (2013) Plasmonic resonance enhanced photo-catalysis in the visible region with Au/Cu:TiO2 nanocomposites—prospect for solar energy utilization for various applications: case study of Cr(VI) removal from water. Sci Adv Mater 5:1–8Google Scholar
  30. 30.
    Gondal MA, Chang X, Sha WEI, Yamani ZH, Zhou Q (2013) Enhanced photoactivity on Ag/Ag3PO4 composites by plasmonic effect. J Colloid Interface Sci 392:325–330Google Scholar
  31. 31.
    M. A. Gondal, M.A. Ali, M.A.Dastageer, X.Chang (2012), CO2 conversion into methanol using granular silicon carbide (α6H-SiC): A comparative evaluation of 355 nm Laser and Xenon mercury broad band radiation sources, Catalysis Letters Volume 143, pp 108–117, 2013Google Scholar
  32. 32.
    Gondal MA, Li C, Chang X, Sikong L, Yamani ZH, Zhou Q, Yang F, Lin Q (2012) Facile preparation of magnetic C/TiO2/Ni composites and their photocatalytic performance for removal of a dye from water under UV light irradiation. J Environ Sci Health A 47(570–576):2012Google Scholar
  33. 33.
    Gondal MA, Ali MA, Chang XF, Shen K, Xu QY, Yamani ZH (2012) Pulsed laser induced photocatalytic reduction of greenhouse gas CO2 into methanol: a value-added hydrocarbon product over SiC. J Environ Sci Health A 47(11):1571–1576Google Scholar
  34. 34.
    Gondal MA, Randhawa MA, Alzahrani AJ, Siddqui MN (2012) Morphology and antifungal effect of nano ZnO and nano Pd doped nano ZnO against Aspergillus and Candida. J Environ Sci Health 47(10):1413–1418Google Scholar
  35. 35.
    Liang X, Gondal MA, Chang X, Yamani ZH, Li N, Lu H, Ji G (2011) Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution. J Environ Sci Health Part A 46:1482–1490Google Scholar
  36. 36.
    Qamar M, Yamani ZH, Gondal MA, Alhoshiani K (2011) Synthesis and comparative photocatalytic activity of Pt/WO3 and Au/WO3 nanocomposites under sunlight-type excitation. Solid State Sci 13(9):1748–1754Google Scholar
  37. 37.
    Qamar M, Gondal MA, Yamani ZH (2011) Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr(VI) from water. J Mol Catal A 343(83–88):2011Google Scholar
  38. 38.
    Siddiqui MN, Gondal MA (2011) Laser based photo-oxidative degradation of methyl tertiary-butyl ether (MTBE) using zinc oxide (ZnO) catalyst. J Environ Sci Health Part A 46:1154–1159CrossRefGoogle Scholar
  39. 39.
    Khalil A, Gondal MA, Dastageer MA (2011) Augmented photo catalytic activity Of palladium doped nano ZnO in the disinfection of Escherichia coli microorganism from water. Appl Catal A 402(1–2):162–167Google Scholar
  40. 40.
    Bagabas A, Gondal M, Khalil A, Dastageer A, Yamani Z, Ashameri M (2010) Laser-induced photocatalytic inactivation of coliform bacteria from water using pd-loaded nano-WO3. Stud Surf Sci Catal 175:279–282CrossRefGoogle Scholar
  41. 41.
    Saleh TA, Gondal MA, Drmosh QA, Yamani ZH, Yamani A (2011) Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem Eng J Chem Eng J 166:407–412Google Scholar
  42. 42.
    Qamar M, Gondal MA, Yamani ZH (2011) Laser-induced efficient removal of Cr (VI) catalyzed by ZnO semiconductor. J Hazard Mater 187(2011):258–263CrossRefGoogle Scholar
  43. 43.
    Hayat K, Gondal MA, Khaled MM, Ahmed S, Shemsi AM (2011) Nano ZnO synthesis by modified Sol Gel method and its application in heterogeneous photo-catalysis removal of phenol from water. Appl Catal A 393:122–129Google Scholar
  44. 44.
    Gondal MA, Chang X, Yamani ZH, Yang G, Ji G (2011) Photocatalytic removal of Sulforhodamine B from aqueous solution on GaN thin films under UV pulsed laser irradiation. J Environ Sci Health Part A 46(4):415–419Google Scholar
  45. 45.
    Gondal MA, Khalil A, Dastageer MA, Yamani ZH (2011) Parametric optimization of nano-ZnO photo catalyst for effective disinfection of Escherichia coli micro organism in Water. J Nanopart Res 13(8):3423–3430Google Scholar
  46. 46.
    Hayat K, Gondal MA, Khaled MM, Yamani ZH, Ahmed S (2011) Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J Hazard Mater 186(2–3):1226–1233Google Scholar
  47. 47.
    Saleh TA, Gondal MA, Drmosh QA (2010) Laser induced photocatalytic activity of locally synthesized CNT/ZnO nanocomposite for removal of cyanide from water. Nanotechnology 21(49):10. Article number 495705Google Scholar
  48. 48.
    Gondal MA, Chang X, Yamani ZH (2010) Pulsed laser -induced photocatalytic removal of Rhodamine 6G over BiOCl from aqueous solution. Chem Eng J 165:250–257CrossRefGoogle Scholar
  49. 49.
    Hayat K, Gondal MA, Khaled Mazen M (2010) Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol gel method. J Mole Catal A 336(2011):64–71Google Scholar
  50. 50.
    Hayat K, Gondal MA, Khaled MM, Ahmed S (2010) Kinetic study of laser induced photocatalytic degradation of dye (alizarin yellow) from waste water using nanostructured ZnO. J Environ Sci and Health Part A 45:1413–1420Google Scholar
  51. 51.
    Fazal A, Al-Fayez S, Abdel-Rahman LH, Seddigi ZS, Al-Arfaj AR, El Ali B, Dastageer Mohammad A, Gondal MA (2010) Mixed-ligand complexes of copper(I) with diimines and phosphines: Effective catalysts for the coupling of phenylacetylene with halobenzene. Polyhedron 28:4072–4076CrossRefGoogle Scholar
  52. 52.
    Qamar M, Gondal MA, Yamani ZH (2010) Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3 nanocomposite. Catal Commun 11(2010):768–772CrossRefGoogle Scholar
  53. 53.
    Randhawa MA, Al-Zahrani AJ, Gondal MA, Bagabas AA (2010) Synthesis, characterization and antimicrobial activity of nano ZnO and Pd loaded nano Zno against enteric pathogens. J Mater Sci Eng 4(5)Google Scholar
  54. 54.
    Gondal MA, Hayat K, Khalid MM, Ahmed S (2010) Photocatalytic removal of hazardous dye from water using nanostructured WO3. Int J Nano Part 4(1):53–63Google Scholar
  55. 55.
    Gondal MA, Bagabas AA, Dastageer MA, Khalil A (2010) Synthesis, characterization, and antimicrobial application of nano-palladium doped nano-WO3. J Mole Catal A 323:78–83CrossRefGoogle Scholar
  56. 56.
    Qamar M, Gondal MA, Yamani ZH (2009) Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water. Catal Commun 10:1980–1984CrossRefGoogle Scholar
  57. 57.
    Qamar M, Gondal MA, Hayat K, Yamani ZH, Al-Hooshani K (2009) Laser-induced removal of dye derivative eosin yellowish catalyzed by n-type WO3 semiconductor catalyst. J Hazard Mater, V 170:584–589CrossRefGoogle Scholar
  58. 58.
    Gondal MA, Sayeed MN, Yamani ZH, Arfaj A (2009) Efficient removal of phenol from water using Fe2O3 semiconductor catalyst under UV laser irradiation. J Environ Sci Health Part A A44(5):515–521CrossRefGoogle Scholar
  59. 59.
    Gondal MA, Sayeed MN (2008) Laser enhanced photocatalytic degradation of organic pollutants from water using ZnO semiconductor catalyst. J Environ Sci Health Part A 43(1):70–77Google Scholar
  60. 60.
    Gondal MA, Sayeed MN, Seddighi Z (2008) Laser enhanced photo-catalytic removal of phenol from water using P-type NiO semiconductor catalyst. J Hazard Mater 155:83–89CrossRefGoogle Scholar
  61. 61.
    Gondal MA, Khalil A (2008) Rapid disinfection Of E-Coliforms contaminated water using WO3 semiconductor catalyst by laser induced photo-catalytic process. J Environ Sci Health Part A 43(5):488–494Google Scholar
  62. 62.
    Gondal MA, Sayeed MN, Arfaj A (2007) Activity comparison of Fe2O3, NiO, WO3 and TiO2 semiconductor catalysts in phenol degradation by laser enhanced photo-catalytic process. Chem Phys Lett 445:325–330CrossRefGoogle Scholar
  63. 63.
    Gondal MA, Seddighi Z (2005) Laser induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417:124CrossRefGoogle Scholar
  64. 64.
    Hameed A, Gondal MA, Yamani ZH, Yahya AH (2005) Significance of pH Measurements in photocatalytic splitting of water by 355 nm UV laser. J Mol Catal A, V 227:241CrossRefGoogle Scholar
  65. 65.
    Hameed A, Gondal MA (2005) Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach. J Mol Catal A 233:35CrossRefGoogle Scholar
  66. 66.
    Gondal MA, Hameed A, Yamani ZH (2005) Laser photocatalytic splitting of water over WO3 catalyst. Energy Sources 27:1151–1165CrossRefGoogle Scholar
  67. 67.
    Gondal MA, Hameed A, Yamani ZH, Al-Suwaiyan A (2004) Production of hydrogen and oxygen by water splitting using laser photo-catalysis, over Fe2O3. Appl Catal A 268:159Google Scholar
  68. 68.
    Gondal MA, Hameed A, Yamani ZH, Al-Suwaiyan A (2004) Laser induced photocatalytic oxidation of water: activity comparison of α-Fe2O3, WO3, TiO2 and NiO catalysts. Chem Phys Lett 385:111Google Scholar
  69. 69.
    Yahaya H, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic reduction of CO2 into methanol. Chem Phys Letts V 400:206CrossRefGoogle Scholar
  70. 70.
    Hameed A, Gondal MA (2004) Laser induced photocatalytic generation of hydrogen and oxygen Over NiO and TiO2. J Mol Catal 219:109CrossRefGoogle Scholar
  71. 71.
    Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO3 under laser illumination: role of 3d-orbitals. Catal Commun 5:715CrossRefGoogle Scholar
  72. 72.
    Gondal MA, Hameed A, Yamani ZH (2004) Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. J Mol Catal A 222:259CrossRefGoogle Scholar
  73. 73.
    Gondal MA, Hameed A, Yamani ZH, Arfaj A (2004) Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem Phys Lett 392:377CrossRefGoogle Scholar
  74. 74.
    Gondal MA, Hameed A, Al-Suwaiyan A (2003) Photocatalytic conversion of methane into methanol using visible laser. Appl Catal 243:165–174CrossRefGoogle Scholar
  75. 75.
    Fujishima KH (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  76. 76.
    Yang D, Gondal MA, Yamani ZH, Xu Q, Xiang D, Mao J, Shen K (2016) Enhanced photosensitization decomposition of Rhodamine B onto BiOCl nanosheets with controllable-exposed {001} facets. Nanosci Nanotechnol Lett 8:1–8Google Scholar
  77. 77.
    Chang X, Wang S, Qi Q, Gondal MA, Rashid SG, Gao S, Yang D, Shen K, Xu Q, Wang P (2015) Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatlyst: an insitue TEM investigation. Dalton Trans 44:15888CrossRefGoogle Scholar
  78. 78.
    Chang X, Wang S, Qi Q, Gondal MA, Rashid SG, Yang D, Dastageer MA, Shen K, Xue Q, Wang P (2015) Constrained growth of ultrasmall BiOCl nanodiscs and their enhanced photoreactivity under visible light irradiation. Appl Catal B 10/2015; 176–177:201–211Google Scholar
  79. 79.
    Shi H, Gondal MA, Al-Saadi AA, Chang X (2015), Visible-light-induced photo-degradation enhancement of methyl orange over bismuth oxybromide through a semiconductor mediated process. J Adv Oxid Technol 18(1):78–84Google Scholar
  80. 80.
    Shi S, Gondal MA, Rashid SG, Qi Q, Al-Saadi AA, Yamani ZH, Sui Y, Xu Q, Shen K (2014) Synthesis of g-C3N4/BiOClxBr1−x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids Surf A 461:202–211Google Scholar
  81. 81.
    Shi S, Gondal MA, Al-Saadi AA, Fajgar R, Kupcik J, Chang X, Shen K, Xu Q, Seddigi ZS (2014) Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels in photo-activity enhancement for removal of model compounds. Colloid Interface Sci 416:212–219Google Scholar
  82. 82.
    Kai Shen MA, Gondal AA, Al-Saadi Li Liye, Chang X, Xu Q (2015) Visible light induced photodegaradtion of Rhodamine dyes over BiOCl and the vital importance of frontier orbital energy of the dye molecules in the reaction kinetics. Res Chem Intermed 41:2753–2766CrossRefGoogle Scholar
  83. 83.
    Zhang B, Ji G, Gondal MA, Liu Y, Zhang X, Chang X, Li N (2013) Rapid adsorption properties of flower-like BiOI nanoplates synthesized via a simple EG-assisted solvothermal process. J Nanopart Res 15:1773Google Scholar
  84. 84.
    Shen K, Gondal MA, Xu Q, Shi S, Chang X (2013) Synthesis of RhB/BiOBr hybrid photocatalyst and its utilization in enhanced degradation of methyl orange via visible-light induced photosensitization process. J Adv Oxid Technol 17(1):121–126Google Scholar
  85. 85.
    Zhang B, Ji G, Liu Y, Gondal MA, Chang X (2013) Efficient adsorption and photocatalytic performance of flower-like three-dimensional (3D) Idoped BiOClBr photocatalyst. Catal Commun 36:25–30Google Scholar
  86. 86.
    Shen K, Gondal MA, Li Z, Li L, Xu Q, Yamani ZH (2013) 450 nm visible light-induced photosensitized degradation of Rhodamine B molecules over BiOBr compound from aqueous solution. React Kinet, Mech Catal 109:247–258Google Scholar
  87. 87.
    Luo L, Shen K, Xu Q, Qin Zhou W, Wei MA Gondal (2013) Preparation of multiferroic Co substituted BiFeO3 with enhanced coercive force and its application in sorption removal of dye molecules from aqueous solution. J Alloys Compd 558:73–76CrossRefGoogle Scholar
  88. 88.
    Zhang J, Gondal MA, Wei W, Zhang T, Xu Q, Shen K (2012) Preparation of room temperature ferromagnetic BiFeO3 and its application as an highly efficient magnetic separable adsorbent for removal of Rhodamine B from aqueous solution. J Alloys Compd 530:107–110CrossRefGoogle Scholar
  89. 89.
    Zhang J, Chang X, Gondal MA, Wei W, Zhang T, Xu Q, Shen K (2012) Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light. Appl Surf Sci 258(20):7795–8322Google Scholar
  90. 90.
    Gondal MA, Chang X, Al-Saadi AA, Yamani ZH, Zhang J, Ji G (2012) BiOCl-assisted photodegradation of Rhodamine B under white light and monochromatic green pulsed laser irradiation. J Environ Sci Health A 47(8):1192–1200CrossRefGoogle Scholar
  91. 91.
    Chang X, Gondal MA, Al-Saadi AA, Shen H, Ali MA, Zhou Q, Zhang J, Du M, Liu 1 Y, Ji G (2012) Photo-degradation of Rhodamine B over unexcited semiconductor compounds of BiOCl and BiOBr. J Colloid Interface Sci 377:290–298Google Scholar
  92. 92.
    Gondal MA, Chang X, Ali MA, Yamani ZH, Ji G (2011) Adsorption and degradation performance of Rhodamine B over BiOBr under 532 nm pulsed laser exposure. Appl Catal A 397:192–200CrossRefGoogle Scholar
  93. 93.
    Li TB, Chen G, Zhou C, Shen ZY, Jin RC, Sun JX (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751CrossRefGoogle Scholar
  94. 94.
    Liu YY, Son WJ, Lu JB, Huang BB, Dai Y, Whangbo MH (2011) Composition dependence of the photocatalytic activities of BiOCl1−xBrx solid solutions under visible light. Chem-Eur J 17:9342Google Scholar
  95. 95.
    Jia ZF, Wang FM, Xin F, Zhang BQ (2011) Simple solvothermal routes to synthesize 3D BiOBrxI1−x microspheres and their visible-light-induced photocatalytic properties. Ind Eng Chem Res 50:6688CrossRefGoogle Scholar
  96. 96.
    Cao J, Xu BY, Luo BD, Lin HL, Chen SF (2011) Efficient photocatalytic degradation of bisphenol A and dye pollutants over BiOI/Zn2SnO4 heterojunction photocatalyst. Catal Commun 13:63CrossRefGoogle Scholar
  97. 97.
    Zhuo Y, Huang J, Cao L, Ouyang H, Wu J (2013) Photocatalytic activity of snow-like Bi2WO6 microcrystalline for decomposition of Rhodamine B under natural sunlight irradiation. Mater Lett 90:107CrossRefGoogle Scholar
  98. 98.
    Cui Z, Liu J, Zeng D, Liu H, Xie C (2010) Quasi-one-dimensional bismuth tungsten oxide nanostructures templated by cotton fibers. J Am Ceram Soc 93:1479Google Scholar
  99. 99.
    Huang J, Zhang H, Zhou X, Zhong X (2013) Dimensionality-dependent performance of nanostructured bismuth sulfide in photodegradation of organic dyes. Mater Chem Phys 138:755CrossRefGoogle Scholar
  100. 100.
    Jiang J, Zhao K, Xiao XY, Zhang LZ (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134:4473CrossRefGoogle Scholar
  101. 101.
    Shang M, Wang W, Sun S, Zhou L, Zhang L (2008) Bi2WO6 nanocrystals with high photocatalytic activities under visible light. J Phys Chem C 112:10407CrossRefGoogle Scholar
  102. 102.
    Wu L, Bi J, Li Z, Wang X, Fu X (2008) Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal Today 131:15CrossRefGoogle Scholar
  103. 103.
    Zhang L, Bahnemann D (2013) Synthesis of nanovoid Bi2WO6 2D ordered arrays as photoanodes for photoelectrochemical water splitting. Chemsuschem 6:283CrossRefGoogle Scholar
  104. 104.
    Xiong J, Cheng G, Li G, Qin F, Chen R (2011) Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv 1:1542CrossRefGoogle Scholar
  105. 105.
    Li G, Ding Y, Zhang Y, Lu Z, Sun H, Chen R (2011) Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances. J Colloid Interface Sci 363:497CrossRefGoogle Scholar
  106. 106.
    Fu J, Tian YL, Chang BB, Xi FN, Dong XP (2012) BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22:21159CrossRefGoogle Scholar
  107. 107.
    Zhang X, Zhang LZ, Xie TF, Wang DJ (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113:7371CrossRefGoogle Scholar
  108. 108.
    Jiang J, Zhang X, Sun PB, Zhang LZ (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555CrossRefGoogle Scholar
  109. 109.
    Cheng HF, Huang BB, Dai Y, Qin XY, Zhang XY (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26:6618CrossRefGoogle Scholar
  110. 110.
    Li HQ, Cui YM, Hong WS (2013) High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red. Appl Surf Sci 264:581CrossRefGoogle Scholar
  111. 111.
    Kong L, Jiang Z, Lai HH, Nicholls RJ, Xiao TC, Jones MO, Edwards PP (2012) Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J Catal 293:116CrossRefGoogle Scholar
  112. 112.
    Xiang QJ, Yu JG, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782CrossRefGoogle Scholar
  113. 113.
    Tu WG, Zhou Y, Zou ZG (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996CrossRefGoogle Scholar
  114. 114.
    Gao FD, Zeng DW, Huang QW, Tian SQ, Xie CS (2012) Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Phys Chem Chem Phys 14:10572CrossRefGoogle Scholar
  115. 115.
    Song SY, Gao W, Wang X, Li XY, Liu DP, Xing Y, Zhang HJ (2012) Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans 41:10472CrossRefGoogle Scholar
  116. 116.
    Tu XM, Luo SL, Chen GX, Li JH (2012) One-pot synthesis, characterization, and enhanced photocatalytic activity of a BiOBr–graphene composite. Chem-Eur J 18:14359Google Scholar
  117. 117.
    Liu H, Su Y, Chen Z, Jin ZT, Wang Y (2014) Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J Hazard Mater 266:75CrossRefGoogle Scholar
  118. 118.
    Liu H, Cao WR, Su Y, Chen Z, Wang Y (2013) Bismuth oxyiodide-graphene nanocomposites with high visible light photocatalytic activity. J Colloid Interface Sci 398(161):204CrossRefGoogle Scholar
  119. 119.
    Liu Z, Xu WC, Fang JZ, Xu XX, Wu SX, Zhu XM, Chen ZH (2012) Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies. Appl Surf Sci 259:441CrossRefGoogle Scholar
  120. 120.
    Ai ZH, Ho W, Lee SC (2011) Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites. J Phys Chem C 115:25330CrossRefGoogle Scholar
  121. 121.
    Zhang XM, Chang XF, Gondal MA, Zhang B, Liu YS, Ji GB (2012) Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light. Appl Surf Sci 258:7826CrossRefGoogle Scholar
  122. 122.
    Ozawa H, Sakai K (2011) Photo-hydrogen-evolving molecular devices driving visible-light-induced water reduction into molecular hydrogen: structure–activity relationship and reaction mechanism. Chem Commun 47:2227CrossRefGoogle Scholar
  123. 123.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294CrossRefGoogle Scholar
  124. 124.
    Dong F, Sun YJ, Fu M, Wu ZB, Lee SC (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219:26CrossRefGoogle Scholar
  125. 125.
    Xiao X, Hao R, Liang M, Zuo XX, Nan JM, Li LS, Zhang WD (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233:122CrossRefGoogle Scholar
  126. 126.
    Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y (2012) A novel class of heterojunction photocatalysts with highly enhanced visible light photocatalytic performances: yBiO(ClxBr1−x)–(1 − y) bismuth oxide hydrate. Appl Catal B 117:148CrossRefGoogle Scholar
  127. 127.
    Kim WJ, Pradhan D, Min B, Sohn Y (2014) Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl Catal B 147:711CrossRefGoogle Scholar
  128. 128.
    Zhang B, Ji GB, Liu YS, Gondal MA, Chang XF (2013) Efficient adsorption and photocatalytic performance of flower-like three-dimensional (3D) I-doped BiOClBr photocatalyst. Catal Commun 36:25CrossRefGoogle Scholar
  129. 129.
    Shang J, Hao WC, Lv XJ, Wang TM, Wang XL, Du Y, Dou SX, Xie TF, Wang DJ, Wang J (2014) Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catal 4:954CrossRefGoogle Scholar
  130. 130.
    Chen HL, Lee WW, Chung WH, Lin HP, Chen YJ, Jiang YR, Lin WY, Chen CC (2014) Controlled hydrothermal synthesis of bismuth oxybromides and their photocatalytic properties. J. Taiwan Inst Chem Eng 45(4):1892–1909. doi: 10.1016/j.jtice.2013.12.015

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Mohammed A. Gondal
    • 1
    Email author
  • Chang Xiaofeng
    • 2
  • Mohamed A. Dastageer
    • 1
  1. 1.Department of PhysicsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Applied ChemistryNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations