Skip to main content

Applications of Bismuth Oxyhalides

  • Chapter
  • First Online:
Novel Bismuth-Oxyhalide-Based Materials and their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 76))

  • 619 Accesses

Abstract

This chapter presents some important applications of bismuth oxyhalides, particularly the material’s application as a photocatalyst in the process of water purification and water splitting. Other applications covered in this chapter are the application of bismuth oxyhalides in gas sensing, in secondary batteries, and in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang DQ, Wen MC, Jiang B et al (2012) Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment. J Hazard Mater 211–212:104–111

    Article  Google Scholar 

  2. Zhu LF, He C, Huang YL et al (2012) Enhanced photocatalytic disinfection of E. Coli 8099 using Ag/BiOI composite under visible light irradiation. Sep Purif Technol 91:59–66

    Article  Google Scholar 

  3. Liang JL, Shan C, Zhang X et al (2015) Bactericidal mechanism of BiOI–AgI under visible light irradiation. Chem Eng J 279:277–285

    Article  Google Scholar 

  4. Wu D, Wang B, Wang W et al (2015) Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J Mater Chem A 3:15148–15155

    Article  Google Scholar 

  5. Gao BF, Chakraborty AK, Yang JM et al (2010) Visible-light photocatalytic activity of BiOCl/Bi3O4Cl nanocomposites. Bull Korean Chem Soc 31:1941–1944

    Article  Google Scholar 

  6. Chang XF, Huang J, Cheng C et al (2010) Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: catalytic kinetics and corrosion products characterization. J Hazard Mater 173:765–772

    Article  Google Scholar 

  7. Tian HT, Li JW, Ge M et al (2012) Removal of bisphenol A by mesoporous BiOBr under simulated solar light irradiation. Catal Sci Technol 2:2351–2355

    Article  Google Scholar 

  8. Li GF, Qin F, Yang H et al (2012) Facile Microwave Synthesis of 3D Flowerlike BiOBr Nanostructures and Their Excellent CrVI Removal Capacity. Eur J Inorg Chem 2012:2508–2513

    Article  Google Scholar 

  9. Qamar M, Yamani ZH (2012) Bismuth oxychloride-mediated and laser-induced efficient reduction of Cr(VI) in aqueous suspensions. Appl Catal A Gen 439–440:187–191

    Article  Google Scholar 

  10. Yu ZY, Detlef B, Ralf D et al (2012) Photocatalytic degradation of azo dyes by BiOX (X = Cl, Br). J Mol Catal A Chem 365:1–7

    Article  Google Scholar 

  11. Ai ZH, Ho WK, Lee SC et al (2009) Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ Sci Technol 43:4143–4150

    Article  Google Scholar 

  12. Xu J, Meng W, Zhang Y et al (2011) Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: Efficacy, products and pathway. Appl Catal B Environ 107:355–362

    Article  Google Scholar 

  13. Sarwan B, Pare B, Acharya AD et al (2012) Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis. J Photochem Photobiol B 116:48–55

    Article  Google Scholar 

  14. Feng YC, Li L, Li JW et al (2011) Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J Hazard Mater 192:538–544

    Article  Google Scholar 

  15. Zhang L, Wang WZ, Sun SM et al (2013) Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst. Appl Catal B Environ 132–133:315–320

    Article  Google Scholar 

  16. Zhang L, Wang WZ, Sun SM et al (2015) Selective transport of electron and hole among 001 and 110 facets of BiOCl for pure water splitting. Appl Catal B Environ 162:470–474

    Article  Google Scholar 

  17. Fan WQ, Yu XQ, Song SY et al (2014) Fabrication of TiO2–BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting. CrystEngComm 16:820–825

    Article  Google Scholar 

  18. Liu X, Yang HM, Dai HY et al (2015) A novel photoelectrocatalytic approach for water splitting by an I-BiOCl/bipolar membrane sandwich structure. Green Chem 17:199–203

    Article  Google Scholar 

  19. Zhang L, Han ZK, Wang WZ et al (2015) Solar-light-driven pure water splitting with ultrathin BiOCl nanosheets. Chem Eur J 21:18089–18094

    Article  Google Scholar 

  20. Yuan JL, Wang J, She YY et al (2014) BiOCl micro-assembles consisting of ultrafine nanoplates: a high performance electro-catalyst for air electrode of Al–air batteries. J Power Sources 263:37–45

    Article  Google Scholar 

  21. Fujishima Y, Okamoto S, Yoshiba M et al (2015) Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO1-x Cl1-y ) photocatalysts that uses acidic water as a fuel. J Mater Chem A 3:8389–8404

    Article  Google Scholar 

  22. Zhao XY, Zhao-Karger ZR, Wang D et al (2013) Metal oxychlorides as cathode materials for chloride ion batteries. Angew Chem Int Ed 52:13621–13624

    Article  Google Scholar 

  23. Lee KS, Myung ST, Amine K et al (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19:1995–2005

    Article  Google Scholar 

  24. Kanga HB, Myung ST, Amine K et al (2010) Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J Power Sources 195:2023–2028

    Article  Google Scholar 

  25. Michel CR, López Contreras NL, Martínez Preciado AH (2011) Gas sensing properties of nanostructured bismuth oxychloride. Sensors Actuators B 160:271–277

    Article  Google Scholar 

  26. Gong JM, Wang XQ, Li X et al (2012) Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosens Bioelectron 38:43–49

    Article  Google Scholar 

  27. Zhao K, Zhang X, Zhang LZ (2009) The first BiOI-based solar cells. Electrochem Commun 11:612–615

    Article  Google Scholar 

  28. Wang KW, Jia FL, Zheng Z et al (2010) Crossed BiOI flake array solar cells. Electrochem Commun 12:1764–1767

    Article  Google Scholar 

  29. Andreas L, Jonas C, Michael W et al (2013) p-DSSCs with BiOCl and BiOBr semiconductor and polybromide electrolyte. Solid State Sci 19:172–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Gondal .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Gondal, M.A., Xiaofeng, C., Dastageer, M.A. (2017). Applications of Bismuth Oxyhalides. In: Novel Bismuth-Oxyhalide-Based Materials and their Applications. Advanced Structured Materials, vol 76. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3739-6_7

Download citation

Publish with us

Policies and ethics