Modified Bismuth Oxihalide Semiconductors

  • Mohammed A. GondalEmail author
  • Chang Xiaofeng
  • Mohamed A. Dastageer
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 76)


This chapter describes different variants of modified bismuth oxyhalides in order to enhance the functionality of the material. Different material modifications, like hybrid system with metal where the metal functions as a co-catalyst and also induces the surface Plasmon effect, and the hybrid system with carbon and other semiconducting materials that form a heterojunction are elaborately discussed.


Surface plasmon resonance Heterojunction Metal–BiOX hybrid system Carbon–BiOX hybrid system Semiconductor–BiOX hybrid system 


  1. 1.
    Linsebigler AL, Lu G, Yates JT (2012) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  2. 2.
    Liu SX, Qu ZP, Han XW (2004) A mechanism for enhanced photocatalytic of siver-loaded titanium dioxide. Catal Today 93–95:877–884CrossRefGoogle Scholar
  3. 3.
    Willets KA, Duyne RV (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  4. 4.
    Oldenburg SJ, Averitt RD, Westcott SL (1998) Nanoengineering of optical resonances. Chem Phys Lett 28:243–247CrossRefGoogle Scholar
  5. 5.
    Schwartzberg AM, Zhang J (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323–10337CrossRefGoogle Scholar
  6. 6.
    Sung-Suh HM, Choi JR, Hah HJ (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photoch Photobio A Chem 163:37–44CrossRefGoogle Scholar
  7. 7.
    Liu H, Cao WR, Su Y (2012) Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl Catal B Environ 111–112:271–279CrossRefGoogle Scholar
  8. 8.
    Yu CL, Yu JC, Fan CF (2010) Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater Sci Eng B 166:213–219CrossRefGoogle Scholar
  9. 9.
    Ai ZH, Ho WK, Lee SC (2011) Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites. J Phys Chem C 115:25330–25337CrossRefGoogle Scholar
  10. 10.
    Su MH, He C, Zhu LF (2012) Enhanced adsorption and photocatalytic activity of BiOI–MWCNT composites towards organic pollutants in aqueous solution. J Hazard Mater 229–230:72–82CrossRefGoogle Scholar
  11. 11.
    Zhu SB, Xu TG, Fu HB (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239CrossRefGoogle Scholar
  12. 12.
    Gao FD, Zeng DW, Huang QW (2012) Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Phys Chem Chem Phys 14:10572–10578CrossRefGoogle Scholar
  13. 13.
    Song S, Gao W, Wang X et al (2012) Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans 41:10472–10476CrossRefGoogle Scholar
  14. 14.
    Cheng HF, Huang BB, Qin XY (2012) A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem Commun 48:97–99CrossRefGoogle Scholar
  15. 15.
    Tzolov MB, Kuo TF, Straus DA (2007) Carbon nanotube–silicon heterojunction arrays and infrared photocurrent responses. J Phys Chem C 111:5800–5804CrossRefGoogle Scholar
  16. 16.
    Xu PS, Sun YM, Shi CS (2003) The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods Phys Res Sect B 199:286–290CrossRefGoogle Scholar
  17. 17.
    Patolsky F, Timko BP, Yu G (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104CrossRefGoogle Scholar
  18. 18.
    Kong L, Jiang Z, Henry H (2012) Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J Catal 293:116–125CrossRefGoogle Scholar
  19. 19.
    Cheng HF, Baibiao BB, Dai Y (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26:6618–6624CrossRefGoogle Scholar
  20. 20.
    Cao J, Xu BY, Lin HL (2012) Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans 41:11482–11490CrossRefGoogle Scholar
  21. 21.
    Ye LQ, Gong CQ, Liu JY (2012) Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets’ photocatalytic activity. J Mater Chem 22:8354–8360CrossRefGoogle Scholar
  22. 22.
    Shenawi-Khalil S, Uvarov V, Fronton S (2012) A novel heterojunction BiOBr/Bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J Phys Chem C 116:11004–11012CrossRefGoogle Scholar
  23. 23.
    Li TB, Chen G, Zhou C (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751–6758CrossRefGoogle Scholar
  24. 24.
    Dai GP, Yu JG, Liu G (2011) Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays. J Phys Chem C 115:7339–7346CrossRefGoogle Scholar
  25. 25.
    Cao J, Li X, Lin HL (2012) In situ preparation of novel p-n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. J Hazard Mater 239–240:316–324CrossRefGoogle Scholar
  26. 26.
    Shamaila S, Khan A, Sajjad L (2011) WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interf Sci 356(2011):465–472CrossRefGoogle Scholar
  27. 27.
    Jiang J, Zhang X, Sun PB (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–20564CrossRefGoogle Scholar
  28. 28.
    Seung YC, Yong JK, Myong HJ (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Mohammed A. Gondal
    • 1
    Email author
  • Chang Xiaofeng
    • 2
  • Mohamed A. Dastageer
    • 1
  1. 1.Department of PhysicsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Applied ChemistryNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations