Advertisement

Preparation Techniques and Crystal Growth Processes

  • Mohammed A. GondalEmail author
  • Chang Xiaofeng
  • Mohamed A. Dastageer
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 76)

Abstract

This chapter presents different preparation methods for bismuth oxyhalides and their relative merits, characteristics, and applicability. The method of preparation of different variants of bismuth oxyhalides includes various hydrolysis methods, preparation by heat treatment, vapor-phase synthesis, hydrothermal preparation, solvothermal preparation, and special halide source-induced preparation.

Keywords

Hydrolysis method Preparation by heat treatment Vapor-phase synthesis Hydrothermal preparation Solvothermal preparation 

References

  1. 1.
    Keller E, Krämer V (2005) A strong deviation from Vegard’s rule: X-Ray powder investigations of the three quasi-binary phase systems BiOX–BiOY (X, Y = Cl, Br, I). Zeitschrift für Naturforschung B 60:1255–1263Google Scholar
  2. 2.
    Zheng GQ, Tang MT (2000) Phases of residue in distillation of BiCl3–HCl–H2O system. Chin J Nonferrous Met 10:250–252Google Scholar
  3. 3.
    Wang Y, Peng W, Chai L (2004) Thermodynamic equilibrium of bismuth hydrometallurgy in chloride and nitrate solutions. J Cent South Univ Technol 11:410–413CrossRefGoogle Scholar
  4. 4.
    Wosylus A, Hoffmann S, Schmidt M et al (2010) In-situ study of the solid-gas reaction of BiCl3 to BiOCl via the intermediate hydrate BiCl3·H2O. Eur J Inorg Chem 2010:1469–1471CrossRefGoogle Scholar
  5. 5.
    Peng HL, Chan CK, Meister S et al (2009) Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem Mater 21:247–252CrossRefGoogle Scholar
  6. 6.
    Novokreshchenova MN, Yukhin Y, Bokhonov BB (2005) Highly pure bismuth (III) oxochloride synthesis. Chem Sustain Deve 13:563–568Google Scholar
  7. 7.
    Ye LQ, Zan L, Tian LH et al (2011) The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953CrossRefGoogle Scholar
  8. 8.
    Lee KS, Myung ST, Amine K et al (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19:1995–2005CrossRefGoogle Scholar
  9. 9.
    Kang HB, Myung ST, Amine K et al (2010) Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J Power Sources 195:2023–2028CrossRefGoogle Scholar
  10. 10.
    Su WY, Wang J, Huang YX et al (2010) Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Mater 62:345–348CrossRefGoogle Scholar
  11. 11.
    Wang M, Huang QL, Chen XT et al (2007) Room temperature synthesis of bismuth oxyfluoride nanosheets and nanorods. Mater Lett 61:4666–4669CrossRefGoogle Scholar
  12. 12.
    Bervas M, Yakshinskiy B, Klein LC et al (2006) Soft-chemistry synthesis and characterization of bismuth oxyfluorides and ammonium bismuth fluorides. J Am Ceram Soc 89:645–651CrossRefGoogle Scholar
  13. 13.
    Ye LQ, Tian LH, Peng TY et al (2011) Synthesis of highly symmetrical BiOI single-crystal nanosheets and their 001 facet-dependent photoactivity. J Mater Chem 21:12479–12484CrossRefGoogle Scholar
  14. 14.
    Yu CL, Fan CF, Yu JC et al (2011) Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation. Mater Res Bull 46:140–146CrossRefGoogle Scholar
  15. 15.
    Ueda W, Sakyu F, Isozaki T et al (1991) Catalytic oxidative dimerization of methane to form C2-compounds over Arppe’s phase oxychlorides of Bi, La and Sm. Catal Lett 10:83–90CrossRefGoogle Scholar
  16. 16.
    Silvestri VJ, Sedgwick TO, Landermann JB (1973) Vapor growth of Bi12GeO20, γ-Bi2O3 and BiOCl. J Cryst Growth 20:165–168Google Scholar
  17. 17.
    Keramidas KG, Voutsas GP, Rentzeperis PI (1993) The crystal structure of BiOCl. Z Kristallogr 205:35–40Google Scholar
  18. 18.
    Ganesha R, Arivuoli D, Ramasamy P (1993) Growth of some group V–VI–VII compounds from the vapour. J Cryst Growth 128:1081–1085CrossRefGoogle Scholar
  19. 19.
    Schuisky M, Hårsta A (1998) Chemical vapor deposition stability diagram for the BiI3–O2 system. Electrochem Soc 145:4234–4239CrossRefGoogle Scholar
  20. 20.
    Xiong J, Cheng G, Li G et al (2011) Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv 1:1542–1553CrossRefGoogle Scholar
  21. 21.
    Deng ZT, Chen D, Peng B et al (2008) From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: synthesis and characterization. Cryst Growth Des 8:2995–3003CrossRefGoogle Scholar
  22. 22.
    Zhu LY, Xie Y, Zheng XW et al (2002) Growth of compound BiIII–VIA–VIIA crystals with special morphologies under mild conditions. Inorg Chem 41:4560–4566CrossRefGoogle Scholar
  23. 23.
    Yuan RS, Lin C, Wu BC et al (2009) Synthesis of SnO2, Fe2O3, and BiOCl fibers from inorganic salts by a templating route. Eur J Inorg Chem 2009:3537–3540CrossRefGoogle Scholar
  24. 24.
    Zhong LS, Hu JS, Liang HP et al (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431CrossRefGoogle Scholar
  25. 25.
    Cao AM, Hu JS, Liang HP et al (2005) Self-assembled Vanadium Pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 44:4391–4395CrossRefGoogle Scholar
  26. 26.
    Wang YL, Jiang XC, Xia YN (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient condition. J Am Chem Soc 125:16176–16177CrossRefGoogle Scholar
  27. 27.
    Zhang X, Ai ZH, Jia FL et al (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753CrossRefGoogle Scholar
  28. 28.
    Zhang J, Shi FJ, Lin J et al (2008) Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem Mater 20:2937–2941CrossRefGoogle Scholar
  29. 29.
    Zhu LP, Liao GH, Bing NC et al (2010) Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization. CrystEngComm 12:3791–3796CrossRefGoogle Scholar
  30. 30.
    Song JM, Mao CJ, Niu HL et al (2010) Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm 12:3875–3881CrossRefGoogle Scholar
  31. 31.
    Ma JM, Liu XD, Lian JB et al (2010) Ionothermal synthesis of BiOCl nanostructures via a long-chain ionic liquid precursor route. Cryst Growth Des 10:2522–2527CrossRefGoogle Scholar
  32. 32.
    Cheng HF, Huang BB, Wang ZY et al (2011) One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity. Chem Eur J 17:8039–8043CrossRefGoogle Scholar
  33. 33.
    Xia JX, Yin S, Li HM et al (2011) Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans 40:5249–5258CrossRefGoogle Scholar
  34. 34.
    Xia JX, Yin S, Li HM et al (2011) Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 27:1200–1206CrossRefGoogle Scholar
  35. 35.
    Xia JX, Yin S, Li HM et al (2011) Enhanced photocatalytic activity of bismuth oxyiodine (BiOI) porous microspheres synthesized via reactable ionic liquid-assisted solvothermal method. Colloids Surf A Physicochem Eng Aspects 387:23–28CrossRefGoogle Scholar
  36. 36.
    Shang M, Wang WZ, Zhang L et al (2009) Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J Hazard Mater 167:803–809CrossRefGoogle Scholar
  37. 37.
    Xiao PP, Zhu LL, Zhu YC et al (2011) Selective hydrothermal synthesis of BiOBr microflowers and Bi2O3 shuttles with concave surfaces. J Solid State Chem 184:1459–1464CrossRefGoogle Scholar
  38. 38.
    Ai ZH, Ho WK, Lee SC et al (2009) Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ Sci Technol 43:4143–4150CrossRefGoogle Scholar
  39. 39.
    Xu J, Meng W, Zhang Y et al (2011) Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway. Appl Catal B Environ 107:355–362CrossRefGoogle Scholar
  40. 40.
    Chen YJ, Wen M, Wu QS (2011) Stepwise blossoming of BiOBr nanoplate-assembled microflowers and their visible-light photocatalytic activities. CrystEngComm 13:3035–3039CrossRefGoogle Scholar
  41. 41.
    Feng YC, Li L, Li JW et al (2011) Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J Hazard Mater 192:538–544CrossRefGoogle Scholar
  42. 42.
    Liu HQ, Gu XN, Chen F et al (2011) Preparation of nano BiOCl microsphere and its fabrication machanism. Chin J Catal 32:129–134CrossRefGoogle Scholar
  43. 43.
    Chen F, Liu HQ, Bagwasi S et al (2010) Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation. J Photochem Photobiol A Chem 215:76–80CrossRefGoogle Scholar
  44. 44.
    Wang CH, Shao CL, Liu YC et al (2008) Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Mater 59:332–335CrossRefGoogle Scholar
  45. 45.
    Yu CL, Zhou WQ, Yu JC (2011) Rapid fabrication of BiOCl(Br) nanosheets with high photocatalytic performance via ultrasound irradiation. Chin J Inorg Chem 27:2033–2038Google Scholar
  46. 46.
    Zheng L, Cao XF, Chen XT et al (2011) BiOBr hierarchical microspheres: microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties. J Colloid Interface Sci 354:630–636CrossRefGoogle Scholar
  47. 47.
    Henle J, Simon P, Frenzel A et al (2007) Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater 19:366–373CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Mohammed A. Gondal
    • 1
    Email author
  • Chang Xiaofeng
    • 2
  • Mohamed A. Dastageer
    • 1
  1. 1.Department of PhysicsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Applied ChemistryNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations