Skip to main content

Drought and Heat Tolerance in Chickpea: Transcriptome and Morphophysiological Changes Under Individual and Combined Stress

  • Chapter
  • First Online:
Plant Tolerance to Individual and Concurrent Stresses

Abstract

Increase in global temperature due to climate change is the major concern and known to have detrimental effect on many agricultural crops. Chickpea (Cicer arietinum L.) is an important legume grown in the arid and semiarid region of the world. Chickpea being a heat sensitive crop is greatly affected by heat stress during both vegetative and reproductive stages. Stress resistance mechanism of chickpea involves signal perception, transduction, and subsequent activation of stress-responsive genes encoding reactive oxygen species (ROS) scavenging and osmolyte, chaperones, and aquaporins. There are different stress perception and signaling pathways, both in drought and high-temperature stress, but some common pathways also exist between the two mechanisms. The present chapter summarizes the cross talk between the drought and heat stress and the molecular mechanism underlying individual stress. Field plants are exposed to multiple stresses, and the combined effect might be antagonistic or synergistic. Hence, improving stress tolerance of plants requires a reevaluation, taking into account the effect of multiple stresses on plant metabolism and stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Berger J, Turner NC (2003) Viewpoint: evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Agarwal G, Garg V, Kudapa H, Doddamani D, Pazhamala LT, Khan AW, Thudi M, Lee SH, Varshney RK (2016) Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J 14(7):1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandre C, Möller-Steinbach Y, Schönrock N, Gruissem W, Hennig L (2009) Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol Plant 2:675–687

    Article  CAS  PubMed  Google Scholar 

  • Araus J, Slafer G, Reynolds M, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJ (2005) Abiotic stresses: plant resistance through breeding and molecular approaches. Food Prod Press, New York

    Google Scholar 

  • Azimi SM, Kor NM, Ahmadi M, Shaaban M, Motlagh ZR, Shamsizadeh M (2015) Investigation of growth analysis in chickpea (Cicer arietinum L.) cultivars under drought stress. Int J Life Sci 9:91–94

    Article  Google Scholar 

  • Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vígh L, Horváth I (2005) “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Arch Biochem Biophys 436:346–354

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basu P, Ali M, Chaturvedi S (2009) Terminal heat stress adversely affects chickpea productivity in northern India-Strategies to improve thermo tolerance in the crop under climate change. In: ISPRS Archives XXXVIII W3 workshop proceedings: impact of climate change on agriculture, 23:25

    Google Scholar 

  • Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, NoverL (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521–1535

    Google Scholar 

  • Bösl B, Grimminger V, Walter S (2006) The molecular chaperone Hsp104—a molecular machine for protein disaggregation. J Struct Biol 156:139–148

    Article  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Busch W, Wunderlich M, Schöffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant J 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Campalans A, Messeguer R, Goday A, Pagès M (1999) Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol Biochem 37:327–340

    Article  CAS  Google Scholar 

  • Chanders S, Kumar PR, Bhadrarays S, Barmanl D (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82

    Google Scholar 

  • Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 3:ra69–ra69

    Article  PubMed  Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol 105:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close T, Bray E (1993) Response of plants to cellular dehydration during environmental stress, The American Society of Plant Physiologists. Department of Botany and Plant Sciences, Riverside

    Google Scholar 

  • Colmenero-Flores JM, Campos F, Garciarrubio A (1997) and Covarrubias*, A.A. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35:393–405

    Article  CAS  PubMed  Google Scholar 

  • Dart P, Islam R, Eaglesham A (1975) The root nodule symbiosis of chickpea and pigeonpea. In: Proceedings, international workshop in Grain Legumes, 13–16 January, ICRISAT, Patancheru

    Google Scholar 

  • Demirevska-Kepova K, Holzer R, Simova-Stoilova L, Feller U (2005) Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  CAS  Google Scholar 

  • Devasirvatham V, Tan D, Gaur P, Raju T, Trethowan R (2012) High temperature tolerance in chickpea and its implications for plant improvement. Crop Pasture Sci 63:419–428

    Article  Google Scholar 

  • Duke J (2012) Handbook of legumes of world economic importance. Springer, Dordrecht

    Google Scholar 

  • Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94:665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis R, Lawn R, Summerfield R, Qi A, Roberts E, Chay P, Brouwer J, Rose J, Yeates S, Sandover S (1994) Towards the reliable prediction of time to flowering in six annual crops. V. Chickpea (Cicer arietinum). Exp Agric 30:271–282

    Article  Google Scholar 

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Gaur P, Pande S, Sharma H, Gowda C, Sharma K, Crouch J, Vadez V (2007) Genetic enhancement of stress tolerance in chickpea: present status and future prospects. In: Crop production stress environments: genetic and management options. AGROBIOS International Publishing, Jodhpur, pp 85–94

    Google Scholar 

  • Gross Y, Kigel J (1994) Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crop Res 36:201–212

    Article  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220

    Article  PubMed  Google Scholar 

  • Hulse J (1989) Nature, composition and utilization of grain legumes. Uses of Tropical Grain Legumes 27: 11

    Google Scholar 

  • Jagadish S, Craufurd P, Wheeler T (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Kader J-C (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  • Kafizadeh N, Carapetian J, Kalantari KM (2008) Effects of heat stress on pollen viability and pollen tube growth in pepper. Res J Bio Sci 3:1159–1162

    Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    Article  CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  • Kurdali F (1996) Nitrogen and phosphorus assimilation, mobilization and partitioning in rainfed chickpea (Cicer arietinum L.). Field Crop Res 47:81–92

    Article  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217

    Article  Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Plant abiotic stress, Blackwell, Oxford, pp 100–144

    Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49:199–222

    Article  CAS  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Meiri D, Breiman A (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90. 1 and affecting the accumulation of HsfA2-regulated sHSPs. The Plant J 59:387–399

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. The Plant J 60:10–21

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimi Biophys Acta Gene Regul Mech 1819:86–96

    Article  CAS  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Abiotic Stress: Mol Genet Genomics 5:25–31

    Google Scholar 

  • Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, Yahubyan G (2015) High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem 87:102–108

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KH, Van Ha C, Watanabe Y, Tran UT, Esfahani MN, Van Nguyen D, Tran L-SP (2015) Correlation between differential drought tolerability of two contrasting drought-responsive chickpea cultivars and differential expression of a subset of CaNAC genes under normal and dehydration conditions. Front Plant Sci 6

    Google Scholar 

  • Nover N, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. The Plant J 18:491–497

    Article  CAS  PubMed  Google Scholar 

  • Porch T, Jahn M (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731

    Article  Google Scholar 

  • Qin F, Sakuma Y, Tran L-SP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, SawanoY, Miyazono K-i (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 20:1693–1707

    Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong S-W, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Rawsthorne S, Hadley P, Summerfield R, Roberts E (1985) Effects of supplemental nitrate and thermal regime on the nitrogen nutrition of chickpea (Cicer arietinum L.). Plant Soil 83:279–293

    Article  CAS  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CS, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr Microbiol 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Roughley R (1970) The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34:631–646

    Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant J 31:629–638

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena N, Saxena M, Johansen C, Virmani S, Harris H (1996) Adaptation of chickpea in the West Asia and North Africa region. ICRISAT, Aleppo

    Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Malhotra R, Halila M, Knights E, Verma M (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. In: Expanding the production and use of cool season food legumes. Springer, pp 572–591

    Google Scholar 

  • Summerfield R, Hadley P, Roberts E, Minchin F, Rawsthorne S (1984) Sensitivity of Chickpeas (Cicer arietinum) to Hot Temperatures during the Reporductive Period. Exp Agric 20:77–93

    Article  Google Scholar 

  • Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Van der Maesen L (1972) A monograph of the genus with special reference to the chickpea (C.arietinum L.) Veeman and Zoren. Wageningen

    Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wery J, Silim S, Knights E, Malhotra R, Cousin R (1993) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73–83

    Article  Google Scholar 

  • Wu Y, Kuzma J, Maréchal E, Graeff R, Lee HC, Foster R, Chua N-H (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Choi D-W, Fenton R, Close T (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot:erq053

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Yadav, R., Juneja, S., Singh, P., Kumar, S. (2017). Drought and Heat Tolerance in Chickpea: Transcriptome and Morphophysiological Changes Under Individual and Combined Stress. In: Senthil-Kumar, M. (eds) Plant Tolerance to Individual and Concurrent Stresses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3706-8_7

Download citation

Publish with us

Policies and ethics