Skip to main content

Tissue Water Status and Bacterial Pathogen Infection: How They Are Correlated?

  • Chapter
  • First Online:
Book cover Plant Tolerance to Individual and Concurrent Stresses

Abstract

Tissue water status plays an important role in determining the fate of plant-pathogen interaction. Water availability is one of the factors that determine the multiplication of bacteria on the surface and inside the plants. Plant-water relations are highly influenced by soil water status, and drought stress is known to severely impact plant-pathogen interaction. Water, as a limiting factor, is differentially manipulated by both plants and pathogens during compatible and incompatible interactions. Plants stimulate the localized loss of water at the site of infection for limiting the bacterial multiplication. On the other hand, foliar and vascular bacterial pathogens employ different strategies to alter the plant water status and eventually establish the infection in plants. Foliar pathogens manipulate their own machinery in response to water-limited condition in plants. They also modulate the plant machinery in order to promote disease by increasing the water soaking between the cells. Similarly, vascular pathogens use different strategies such as clogging of vessels and embolism of xylem elements that leads to wilting of plant. Here, we discuss the current knowledge on impact of drought stress during plant interaction with foliar or vascular pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axtell CA, Beattie GA (2002) Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 68:4604–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R et al (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49:533–555

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA, Lindow SE (1994) Survival, growth, and localization of epiphytic fitness mutants of Pseudomonas syringae mutants on leaves. Appl Environ Microbiol 60:3790–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157

    Article  CAS  PubMed  Google Scholar 

  • Bunster L, Fokkema HJ, Schippers B (1989) Effect of surface activity of Pseudomonas spp, on leaf wettability. Appl Environ Microbiol 55:1340–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HK, Iandolino A, Goes da Silva F, Cook D (2013) Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant-Microbe Interact 26:643–657

    Article  CAS  PubMed  Google Scholar 

  • Cook AA, Stall RE (1977) Effects of watersoaking on response to Xanthomonas vesicatoria in pepper leaves. Phytopathology 67:1101–1103

    Article  Google Scholar 

  • Coplin DL, Majerczak DR (1990) Extracellular polysaccharide genes in Erwinia stewartii: directed mutagenesis and complementation analysis. Mol Plant-Microbe Interact 3:286–292

    Article  CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  CAS  PubMed  Google Scholar 

  • Daugherty MP, Lopes JRS, Almeida RPP (2010) Strain-specific alfalfa water stress induced by Xylella fastidiosa. Eur J Plant Pathol 127:333–340

    Article  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinnibier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing-cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357

    Article  Google Scholar 

  • D’Souza-Ault MR, Smith LT, Smith GM (1993) Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59:473–478

    PubMed  PubMed Central  Google Scholar 

  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102:11064–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Beattie GA (2009) Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Mol Plant-Microbe Interact 22:857–867

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Chen C, Beattie GA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12:1486–1497

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR (2008) The Pseudomonas syringae type III effector HopAM1 enhances virulence on waterstressed plants. Mol Plant-Microbe Interact 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Rudolph K (1987) Demonstration of levan and alginate in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae pv. phaseolicola. J Phytopathol 120:9–19

    Article  CAS  Google Scholar 

  • Guo Y, Sagaram US, Kim JS, Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol 76:2234–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Dixit SK, Senthil-Kumar M (2016) Drought stress predominantly endures Arabidopsis thaliana to pseudomonas syringae infection. Front Plant Sci 7:808

    PubMed  PubMed Central  Google Scholar 

  • Ham JH, Majerczak DR, Arroyo-Rodriguez AS, Mackey DM, Coplin DL (2006) WtsE, an AvrEfamily effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol Plant-Microbe Interact 19:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Keith RC, Keith LM, Hernández-Guzmán G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Kemp BP, Horne J, Bryant A, Cooper RM (2004) Xanthomonas axonopodis pv. manihotis gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (Manihot esculenta). Physiol Mol Plant Pathol 64:209–218

    Article  CAS  Google Scholar 

  • Kets EP, Galinski EA, de Wit M, de Bont JA, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178:6665–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch AL (1984) Shrinkage of growing Escherichia coli cells by osmotic stress. J Bacteriol 159:919–924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz M, Burch AY, Seip B, Lindow SE, Gross H (2010) Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 76:5452–5462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46:307–346

    Article  CAS  PubMed  Google Scholar 

  • Leveau JH, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu GT, Ma ZF, Hu JR, Tang DJ, He YQ et al (2007) A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris. J Microbiol 153:737–746

    Article  CAS  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv.tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  Google Scholar 

  • Moier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70:346–355

    Article  Google Scholar 

  • Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci U S A 100:15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo S-H et al (2010) The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid–dependent manner. Plant Physiol 152:1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman KL, Almeida RPP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh HS, Collmer A (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J 44:348–359

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Sinha R, Mysore KS, Senthil-Kumar M (2014) Impact of concurrent drought stress and pathogen infection on plants. In: Mahalingam R (ed) Combined stresses in plants: physiological, molecular, and biochemical aspects. Springer, Cham

    Google Scholar 

  • Peñaloza-Vázquez A, Fakhr MK, Bailey AM, Bender CL (2004) AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae. J Microbiol 150:2727–2737

    Article  Google Scholar 

  • Pérez-Donoso AG, Greve LC, Walton JH, Shackel KA, Labavitch JM (2007) Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiol 143:1024–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM (2010) Cell wall–degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa infected grapevines. Plant Physiol 152:1748–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151

    Article  CAS  PubMed  Google Scholar 

  • Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact 18:682–693

    Article  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS (2013) Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 14:9497–9513

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico A, Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact 21:269–282

    Article  CAS  PubMed  Google Scholar 

  • Rudolph K (1978) Host specific principle from Pseudomonas-phaseolicola (Burkh) Dowson, inducing water-soaking in bean-leaves. Phytopathologische Zeitschrift- J Phytopathol 93:218–226

    Article  Google Scholar 

  • Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage. In: Sattelmacher B, Horst WJ (eds) Transport and reactions: the significance of the apoplast for the mineral nutrition of higher plants. Springer, Berlin

    Google Scholar 

  • Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM (2005) Plant microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166:589–594

    Article  CAS  PubMed  Google Scholar 

  • Stevenson JF, Matthews MA, Greve LC, Labavitch JM, Rost TL (2004) Grapevine susceptibility to Pierce’s disease II: progression of anatomical symptoms. Am J Enol Vitic 55:238–245

    Google Scholar 

  • Sun Q, Sun Y, Walker MA, Labavitch JM (2013) Vascular occlusions in grapevines with Pierce’s disease make disease symptom development worse. Plant Physiol 161:1529–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy PM, Smith B (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Simonich MT, Innes RW (2007) Mutations in LACS2, a long-chain acyl-coenzyme a synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 144:1093–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardlaw IF (2005) Consideration of apoplastic water in plant organs: a reminder. Funct Plant Biol 32:561–569

    Article  Google Scholar 

  • Wright CA, Beattie GA (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:3269–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM (1974) Effect of water on bacterial multiplication in plant tissue. N Z J Agric Res 17:115–119

    Article  Google Scholar 

  • Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, Lindow SE, Grossd DC, Beattiea GA (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci U S A 110:e425–e434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Combined stress tolerance-related projects at MSk Lab are supported by National Institute of Plant Genome Research core funding and DBT-Ramalingaswami re-entry fellowship grant (BT/RLF/re-entry/23/2012) and DBT-Innovative Young Biotechnologist Award. UF acknowledges DBT-SRF (DBT/2013/NIPGR/68) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthappa Senthil-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Fatima, U., Senthil-Kumar, M. (2017). Tissue Water Status and Bacterial Pathogen Infection: How They Are Correlated?. In: Senthil-Kumar, M. (eds) Plant Tolerance to Individual and Concurrent Stresses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3706-8_11

Download citation

Publish with us

Policies and ethics