Exploiting Variability in Resistive Memory Devices for Cognitive Systems

  • Vivek Parmar
  • Manan Suri
Part of the Cognitive Systems Monographs book series (COSMOS, volume 31)


In literature, different approaches point to the use of different resistive memory (RRAM) device families such as PCM [1], OxRAM, CBRAM [2], and STT-MRAM [3] for synaptic emulation in dedicated neuromorphic hardware. Most of these works justify the use of RRAM devices in hybrid learning hardware on grounds of their inherent advantages, such as ultra-high density, high endurance, high retention, CMOS compatibility, possibility of 3D integration, and low power consumption [4]. However, with the advent of more complex learning and weight update algorithms (beyond-STDP kinds), for example the ones inspired from Machine Learning, the peripheral synaptic circuit overhead considerably increases. Thus, use of RRAM cannot be justified on the merits of device properties alone. A more application-oriented approach is needed to further strengthen the case of RRAM devices in such systems that exploit the device properties also for peripheral nonsynaptic and learning circuitry, beyond the usual synaptic application alone.In this chapter, we discuss two novel designs utilizing the inherent variability in resistive memory devices to successfully implement modified versions of Extreme Learning Machines and Restricted Boltzmann Machines in hardware.


Hide Layer Extreme Learn Machine Hide Neuron Synaptic Weight Conductive Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction. 2011 IEEE International Electron Devices Meeting (IEDM), vol. 4, no. 4, pp. 5–7, Dec 2011Google Scholar
  2. 2.
    Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: Bio-inspired stochastic computing using binary cbram synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013)CrossRefGoogle Scholar
  3. 3.
    Vincent, A.F., Larroque, J., Zhao, W.S., Romdhane, N.B. Bichler, O., Gamrat, C., Klein, J.O., Galdin-Retailleau, S., Querlioz, D.: Spin-transfer torque magnetic memory as a stochastic memristive synapse. In: Circuits and Systems (ISCAS), vol. 2014, pp. 1074–1077 (2014)Google Scholar
  4. 4.
    DeSalvo, B., Sousa, V., Perniola, L., Jahan, C., Maitrejean, S., Nodin, J., Cagli, C., Jousseaume, V., Molas, G., Vianello, E. et al.: Emerging memory technologies: Challenges and opportunitiesGoogle Scholar
  5. 5.
    Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.S. Lee, B., Chen, F.T., Tsai, M.-J.: Metal–Oxide RRAM, vol. 100, no. 6. IEEE, pp. 1951–1970 (2012)Google Scholar
  6. 6.
    Gopalan, C., Ma, Y., Gallo, T., Wang, J., Runnion, E., Saenz, J., Koushan, F., Blanchard, P., Hollmer, S.: Demonstration of conductive bridging random access memory (cbram) in logic cmos process. Solid-State Electron. 58, 1 (2011)CrossRefGoogle Scholar
  7. 7.
    Su, Y.-T., Chang, K.-C., Chang, T.-C., Tsai, T.-M., Zhang, R., Lou, J., Chen, J.-H., Young, T.-F., Chen, K.-H., Tseng, B.-H., et al.: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. Appl. Phys. Lett. 103(16), 163502 (2013)CrossRefGoogle Scholar
  8. 8.
    Yu, S., Guan, X., Wong, H.-S.P.: On the switching parameter variation of metal oxide rrampart ii: model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4), 1183–1188 (2012)CrossRefGoogle Scholar
  9. 9.
    Suri, M., Parmar, V., Sassine, G., Alibart, F.: Oxram based elm architecture for multi-class classification applications. Neural Netw. (IJCNN) 2015, 1–8 (2015)Google Scholar
  10. 10.
    Suri, M., Parmar, V.: Exploiting intrinsic variability of filamentary resistive memory for extreme learning machine architectures. IEEE Trans. Nanotechnol. 14(6), 963–968 (2015)CrossRefGoogle Scholar
  11. 11.
    Raghavan, N.: Performance and Reliability Trade-offs for High-\(\kappa \) RRAM. Elsevier, vol. 54, no. 9 (2014)Google Scholar
  12. 12.
    Fantini, A., Goux, L., Degraeve, R., Wouters, D., Raghavan, N., Kar, G., Belmonte, A., Chen, Y.-Y., Govoreanu, B., Jurczak, M.: Intrinsic Switching Variability in Hfo 2 RRam, pp. 30–33 (2013)Google Scholar
  13. 13.
    Chen, A., Lin, M.-R.: Variability of resistive switching memories and its impact on crossbar array performance. Reliab. Phys. Symp. (IRPS) 2011 (2011)Google Scholar
  14. 14.
    Suri, M., Parmar, V., Kumar, A., Querlioz, D., Alibart, F.: Neuromorphic hybrid rram-cmos rbm architecture. In: 2015 15th Non-Volatile Memory Technology Symposium (NVMTS), pp. 1–6, Oct 2015Google Scholar
  15. 15.
    Huang, G.-B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 1–15 (2014)Google Scholar
  16. 16.
    Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRefGoogle Scholar
  17. 17.
    Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast l 1-minimization algorithms and an application in robust face recognition: A review, pp. 1849–1852 (2010)Google Scholar
  18. 18.
    Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Netw. 2004, 985–990 (2004)Google Scholar
  19. 19.
    Merkel, C., Kudithipudi, D.: A current-mode cmos/memristor hybrid implementation of an extreme learning machine. In: Proceedings of the 24th edition of the Great Lakes Symposium on VLSI, pp. 241–242. ACM (2014)Google Scholar
  20. 20.
    Decherchi, S., Gastaldo, P., Leoncini, A., Zunino, R.: Efficient digital implementation of extreme learning machines for classification. IEEE Trans. Circuits Syst. II: Express Briefs 59(8), 496–500 (2012)CrossRefGoogle Scholar
  21. 21.
    Lee, H.Y., Chen, P.S., Wu, T.Y., et al.: Low power and speed bipolar switching with a thin reactive buffer layer in robust HfO2 based RRAM. Int. Electron Devices Meet. (2008)Google Scholar
  22. 22.
    Su, Y.-T., et al.: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. Appl. Phys. Lett. 103, 16 (2013)Google Scholar
  23. 23.
    Yu, S., Guan, X., Wong, H.-S.P.: On the stochastic nature of resistive switching in metal oxide rram: physical modeling, monte carlo simulation, and experimental characterization. Int. Electron Device Meet. (2011)Google Scholar
  24. 24.
    Shi, B., Chen, L., Lu, C.: Current controlled sigmoid neural circuit. U.S. Patent, vol. 6, Dec 2003Google Scholar
  25. 25.
    Irturk, A., Benson, B., Mirzaei, S., Kastner, R.: An fpga design space exploration tool for matrix inversion architectures. Appl. Specif. Processors 2008, 42–47 (2008)Google Scholar
  26. 26.
    Zhang, W., Betz, V., Rose, J.: Portable and scalable fpga-based acceleration of a direct linear system solver. In: ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 5, p. 1 (2012)Google Scholar
  27. 27.
    Bache, K., Lichman, M.: UCI Machine Learning Repository [Irvine. CA: University of California, School of Information and Computer Science (2013).
  28. 28.
    Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 926 (2010)Google Scholar
  29. 29.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pan, D., Wilamowski, B.M.: A vlsi implementation of mixed-signal mode bipolar neuron circuitry. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 2, pp. 971–976, July 2003Google Scholar
  31. 31.
    Li, H., Jiang, Z., Huang, P., Wu, Y., Chen, H.Y., Gao, B., Liu, X.Y., Kang, J.F., Wong, H.S.P.: Variation-aware, reliability-emphasized design and optimization of rram using spice model. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1425–1430, Mar 2015Google Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.IIT Delhi, Hauz KhasNew DelhiIndia

Personalised recommendations