Advertisement

Theoretical Analysis of Spike-Timing-Dependent Plasticity Learning with Memristive Devices

  • Damien Querlioz
  • Olivier Bichler
  • Adrien F. Vincent
  • Christian Gamrat
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 31)

Abstract

Several recent works, described in chapters of the present series, have shown that memristive devices can naturally emulate variations of the biological spike-timing-dependent plasticity (STDP) learning rule and can allow the design of learning systems. Such systems can be built with memristive devices of extremely diverse physics and behaviors and are particularly robust to device variations and imperfections. The present work investigates the theoretical roots of their STDP learning. It is suggested, by revisiting works developed in the field of computational neuroscience, that STDP learning can approximate the machine learning algorithm of Expectation-Maximization, the neural network operation implementing “Expectation” steps, while STDP itself implementing “Maximization” steps. This process allows a system to perform Bayesian inference among the values of a latent variable present in the input. This theoretical analysis allows interpreting how STDP differs for several device physics and why it is robust to device mismatch. It can also provide guidelines for designing STDP-based learning systems.

Keywords

Output Neuron Synaptic Weight Inference Engine Phase Change Memory Memristive Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank C. Bennett, P. Bessière, L. Calvet, D. Chabi, D. Colliaux, B. De Salvo, J. Droulez, J. S. Friedman, J. Grollier, J.-O. Klein, N. Locatelli, E. Mazer, A. Mizrahi, M. Suri, S. Tiwari, D. Vodenicarevic, and W. S. Zhao. The works presented in this chapter were funded by the ANR COGNISPIN (ANR-13-JS03-0004-01) and the FP7 ICT BAMBI (FP7-ICT-2013-C) projects and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (Labex NanoSaclay, reference: ANR-10-LABX-0035).

References

  1. 1.
    Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano-Gotarredona, T., Linares-Barranco, B., Vuillaume, D.: A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Adv. Funct. Mater. 22(3), 609–616 (2012). doi: 10.1002/adfm.201101935 CrossRefGoogle Scholar
  2. 2.
    Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s Postulate Revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001). doi: 10.1146/annurev.neuro.24.1.139 CrossRefGoogle Scholar
  3. 3.
    Bichler, O., Querlioz, D., Thorpe, S.J., Bourgoin, J.P., Gamrat, C.: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348 (2012). doi: 10.1016/j.neunet.2012.02.022 CrossRefGoogle Scholar
  4. 4.
    Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., Gamrat, C.: Visual pattern extraction using energy-efficient “2-PCM Synapse” neuromorphic architecture. IEEE Trans. Electron Devices 59(8), 2206–2214 (2012). doi: 10.1109/TED.2012.2197951 CrossRefGoogle Scholar
  5. 5.
    Bill, J., Legenstein, R.: A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Front. Neurosci. 8, 412 (2014). doi: 10.3389/fnins.2014.00412 Google Scholar
  6. 6.
    Chabi, D., Querlioz, D., Zhao, W., Klein, J.O.: Robust learning approach for neuro-inspired nanoscale crossbar architecture. J. Emerg. Technol. Comput. Syst. 10(1), 5:1–5:20 (2014). doi: 10.1145/2539123
  7. 7.
    Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A., Grollier, J.: A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012). doi: 10.1038/nmat3415 CrossRefGoogle Scholar
  8. 8.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977). doi: 10.2307/2984875 MathSciNetMATHGoogle Scholar
  9. 9.
    Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoSci. 1(1–2), 24–30 (2011). doi: 10.1007/s12668-011-0004-7 CrossRefGoogle Scholar
  10. 10.
    Gacem, K., Retrouvey, J.M., Chabi, D., Filoramo, A., Zhao, W., Klein, J.O., Derycke, V.: Neuromorphic function learning with carbon nanotube based synapses. Nanotechnology 24(38), 384013 (2013). doi: 10.1088/0957-4484/24/38/384013
  11. 11.
    Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). doi: 10.1088/0957-4484/24/38/384010
  12. 12.
    Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). doi: 10.1021/nl904092h CrossRefGoogle Scholar
  13. 13.
    Lecerf, G., Tomas, J., Saighi, S.: Excitatory and inhibitory memristive synapses for spiking neural networks. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1616–1619 (2013). doi: 10.1109/ISCAS.2013.6572171
  14. 14.
    Lee, J.H., Likharev, K.K.: Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circuit Theor. Appl. 35(3), 239–264 (2007). doi: 10.1002/cta.410 CrossRefGoogle Scholar
  15. 15.
    Linares-Barranco, B., Serrano-Gotarredona, T.: Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems. In: Proceedings of IEEE Conference on Nanotechnology, 2009, pp. 601–604 (2009)Google Scholar
  16. 16.
    Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997). doi: 10.1126/science.275.5297.213 CrossRefGoogle Scholar
  17. 17.
    Masquelier, T., Guyonneau, R., Thorpe, S.J.: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008). doi: 10.1371/journal.pone.0001377 CrossRefGoogle Scholar
  18. 18.
    Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput. Biol. 3(2), e31 (2007). doi: 10.1371/journal.pcbi.0030031 CrossRefGoogle Scholar
  19. 19.
    Nessler, B., Pfeiffer, M., Buesing, L., Maass, W.: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 9(4) (2013). doi: 10.1371/journal.pcbi.1003037
  20. 20.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009). doi: 10.1103/PhysRevE.80.021926
  21. 21.
    Querlioz, D., Bichler, O., Dollfus, P., Gamrat, C.: Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans. Nanotechnol. 12(3), 288–295 (2013)CrossRefGoogle Scholar
  22. 22.
    Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network immune to device variations. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1775–1781 (2011)Google Scholar
  23. 23.
    Querlioz, D., Bichler, O., Vincent, A., Gamrat, C.: Bioinspired programming of memory devices for implementing an inference engine. Proc. IEEE 103(8), 1398–1416 (2015). doi: 10.1109/JPROC.2015.2437616 CrossRefGoogle Scholar
  24. 24.
    Querlioz, D., Dollfus, P., Bichler, O., Gamrat, C.: Learning with memristive devices: how should we model their behavior? In: Proceedings of IEEE/ACM International Symposium Nanoscale Architectures (NANOARCH 2011), p. 150 (2011)Google Scholar
  25. 25.
    Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., Shin, J., Biju, K.P., Kong, J., Lee, K., Lee, B., Hwang, H.: Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22(25), 254023 (2011). doi: 10.1088/0957-4484/22/25/254023
  26. 26.
    Sharad, M., Augustine, C., Panagopoulos, G., Roy, K.: Spin-based neuron model with domain-wall magnets as synapse. IEEE Trans. Nanotechnol. 11(4), 843–853 (2012). doi: 10.1109/TNANO.2012.2202125 CrossRefGoogle Scholar
  27. 27.
    Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: Proceedings of IEEE International Symposium on Nanoscale Architectures 2008 (NANOARCH), pp. 85–92 (2008). doi: 10.1109/NANOARCH.2008.4585796
  28. 28.
    Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 365202 (2007). doi: 10.1088/0957-4484/18/36/365202
  29. 29.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). doi: 10.1038/nature06932 CrossRefGoogle Scholar
  30. 30.
    Suri, M., Bichler, O., Querlioz, D., Traoré, B., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Physical aspects of low power synapses based on phase change memory devices. J. Appl. Phys. 112(5), 054904–054904–10 (2012). doi: 10.1063/1.4749411
  31. 31.
    Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013). doi: 10.1109/TED.2013.2263000 CrossRefGoogle Scholar
  32. 32.
    Vincent, A., Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat, C., Zhao, W., Klein, J.O., Galdin-Retailleau, S., Querlioz, D.: Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 9(2), 166–174 (2015). doi: 10.1109/TBCAS.2015.2414423 CrossRefGoogle Scholar
  33. 33.
    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., Wong, H.P.: An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58(8), 2729–2737 (2011). doi: 10.1109/TED.2011.2147791 CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Damien Querlioz
    • 1
  • Olivier Bichler
    • 2
  • Adrien F. Vincent
    • 1
  • Christian Gamrat
    • 2
  1. 1.CNRS, Institut d’Electronique Fondamentale, University of Paris-SudOrsayFrance
  2. 2.CEA, LISTSaclayFrance

Personalised recommendations