Hardware Spiking Artificial Neurons, Their Response Function, and Noises

  • Doo Seok Jeong
Part of the Cognitive Systems Monographs book series (COSMOS, volume 31)


In this chapter, overviewed are hardware-based spiking artificial neurons that code neuronal information by means of action potential, viz. spike, in hardware artificial neural networks (ANNs). Ongoing attempts to realize neuronal behaviours on Si ‘to a limited extent’ are addressed in comparison with biological neurons. Note that ‘to a limited extent’ in this context implicitly means ‘sufficiently’ for realizing key features of neurons as information processors. This ambiguous definition is perhaps open to a question as to what neuronal behaviours the key features encompass. The key features are delimited within the framework of neuromorphic engineering, and thus, they approximately are (i) integrate-and-fire; (ii) neuronal response function, i.e. spike-firing rate change upon synaptic current; and (iii) noise in neuronal response function. Hardware-based spiking artificial neurons are aimed to achieve these goals that are ambitious albeit challenging. Overviewing a number of attempts having made up to now illustrates approximately two seemingly different approaches to the goal: a mainstream approach with conventional active circuit elements, e.g. complementary metal-oxide-semiconductor (CMOS), and an emerging one with monostable resistive switching devices, i.e. threshold switches. This chapter will cover these approaches with particular emphasis on the latter. For instance, available types of threshold switches, which are classified upon underlying physics will be dealt with in detail.


Spike Train Resistive Switching Synaptic Current Gain Function Threshold Switch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



DSJ acknowledges the Korea Institute of Science and Technology grant (Grant No 2Z04510). DSJ also thanks Mr. Hyungkwang Lim for his kind help.


  1. 1.
    Averbeck, B.B., Latham, P.E., Pouget, A.: Nat. Rev. Neurosci. 7, 358–366 (2006)CrossRefGoogle Scholar
  2. 2.
    Averbeck, B.B., Lee, D.: J. Neurophysiol. 95, 3633–3644 (2006)CrossRefGoogle Scholar
  3. 3.
    Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Front. Neurosci. 5, 1–23 (2011)Google Scholar
  4. 4.
    Hamann, C.H., Hamnett, A., Vielstich, W.: Electrochemistry, 2nd edn. WILEY-VCH Verlag GmbH & Co., Weinheim (2007)Google Scholar
  5. 5.
    Gadsby, D.C.: Nat. Rev. Mol. Cell Biol. 10, 344–352 (2009)CrossRefGoogle Scholar
  6. 6.
    Jeong, D.S., Kim, I., Ziegler, M., Kohlstedt, H.: RSC Adv. 3, 3169–3183 (2013)CrossRefGoogle Scholar
  7. 7.
    Malenka, R.C., Nicoll, R.A.: Science 285, 1870–1874 (1999)CrossRefGoogle Scholar
  8. 8.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience. The MIT Press, London (2001)MATHGoogle Scholar
  9. 9.
    Butts, D.A., Goldman, M.S.: PLoS Biol. 4, e92 (2006)CrossRefGoogle Scholar
  10. 10.
    Deneve, S., Latham, P.E., Pouget, A.: Nat. Neurosci. 4, 826–831 (2001)CrossRefGoogle Scholar
  11. 11.
    Knill, D.C., Pouget, A.: Trends Neurosci. 27, 712–719 (2004)CrossRefGoogle Scholar
  12. 12.
    Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Nat. Neurosci. 9, 1432–1438 (2006)CrossRefGoogle Scholar
  13. 13.
    Calvin, W.H., Stevens, C.F.: Science 155, 842–844 (1967)CrossRefGoogle Scholar
  14. 14.
    Bialek, W., Rieke, F.: de Ruyter van Steveninck R. Warland D. Science 252, 1854–1857 (1991)Google Scholar
  15. 15.
    Gerstner, W.: Neural Comput. 12, 43–89 (2000)CrossRefGoogle Scholar
  16. 16.
    Chance, F.S., Abbott, L.F., Reyes, A.D.: Neuron 35, 773–782 (2002)CrossRefGoogle Scholar
  17. 17.
    Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge, MA (2003)Google Scholar
  18. 18.
    Anderson, C.: Computational Intelligence Imitating Life. IEEE Press, New York (1994)Google Scholar
  19. 19.
    Pouget, A., Dayan, P., Zemel, R.S.: Annu. Rev. Neurosci. 26, 381–410 (2003)CrossRefGoogle Scholar
  20. 20.
    Weiss, Y., Fleet, D.J.: Velocity Likelihoods in Biological and Machine Vision. In Statistical Theories of the Cortex. MIT Press, Cambridge, MA (2002)Google Scholar
  21. 21.
    Lim, H., Kornijcuk, V., Seok, J.Y., Kim, S.K., Kim, I., Hwang, C.S., Jeong, D.S.: Sci. Rep. (2015)Google Scholar
  22. 22.
    Lapicque, L.: J. Physiol. Pathol. Gen. 9, 620–635 (1907)Google Scholar
  23. 23.
    Abbott, L.F.: Brain Res. Bull. 50, 303–304 (1999)CrossRefGoogle Scholar
  24. 24.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations. Cambridge University Press, Plasticity (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized Integrate-and-Fire Models of Neuronal Activity Approximate Spike Trains of a Detailed Model to a High Degree of Accuracy, vol 92. vol 2. doi: 10.1152/jn.00190.2004 (2004)
  26. 26.
    Hodgkin, A.L., Huxley, A.F.: J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  27. 27.
    FitzHugh, R.: Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  28. 28.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: Proc. IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  29. 29.
    Destexhe, A.: Neural Comput. 9, 503–514 (1997)CrossRefGoogle Scholar
  30. 30.
    Kepler, T., Abbott, L.F., Marder, E.: Biol. Cybern. 66, 381–387 (1992)CrossRefGoogle Scholar
  31. 31.
    Mead, C.: Analog VLSI and Neural Systems. Adison-Wesley, Reading, MA (1989)MATHGoogle Scholar
  32. 32.
    Mead, C.: Proc. IEEE 78, 1629–1636 (1990)CrossRefGoogle Scholar
  33. 33.
    Indiveri, G., Chicca, E., Douglas, R.: IEEE Trans. Neural Netw. 17, 211–221 (2006)CrossRefGoogle Scholar
  34. 34.
    Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: Nat. Mater. 12, 114–117 (2012)CrossRefGoogle Scholar
  35. 35.
    Crane, H.D.: Proc. IRE 50, 2048–2060 (1962)CrossRefGoogle Scholar
  36. 36.
    Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Rep. Prog. Phys. 75, 076502 (2012)CrossRefGoogle Scholar
  37. 37.
    Jeong, D.S., Lim, H., Park, G.-H., Hwang, C.S., Lee, S.: Cheong B-k. J. Appl. Phys. 111, 102807 (2012)CrossRefGoogle Scholar
  38. 38.
    Ovshinsky, S.R.: Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  39. 39.
    Lee, M.-J., Lee, D., Cho, S.-H., Hur, J.-H., Lee, S.-M., Seo, D.H., Kim, D.-S., Yang, M.-S., Lee, S., Hwang, E., Uddin, M.R., Kim, H., Chung, U.I., Park, Y., Yoo, I.-K.: Nat. Commun. 4, 2629 (2013)Google Scholar
  40. 40.
    Ahn, H.-W., Jeong, D.S., Cheong, B.-K., Kim, S.-D., Shin, S.-Y., Lim, H., Kim, D., Lee, S.: ECS Solid State Lett. 2, N31–N33 (2013)Google Scholar
  41. 41.
    Mott, N.F.: Proc. Phys. Soc. Sect. A 62, 416 (1949)CrossRefGoogle Scholar
  42. 42.
    Cario, L., Vaju, C., Corraze, B., Guiot, V., Janod, E.: Adv. Mater. 22, 5193–5197 (2010)CrossRefGoogle Scholar
  43. 43.
    Han, J.-W.: Choi Y-K Bistable resistor (biristor)—gateless silicon nanowire memory. Symp. VLSI Technol. 15–17(2010), 171–172 (2010). doi: 10.1109/vlsit.2010.5556215 Google Scholar
  44. 44.
    Pickett, M.D., Williams, R.S.: Nanotechnology 23, 215202 (2012)CrossRefGoogle Scholar
  45. 45.
    Liu, X., Sadaf, S.M., Son, M., Shin, J., Park, J., Lee, J., Park, S., Hwang, H.: Nanotechnology 22, 475702 (2011)CrossRefGoogle Scholar
  46. 46.
    Bienenstock, E., Cooper, L., Munro, P.: J. Neurosci. 2, 32–48 (1982)Google Scholar
  47. 47.
    Deneve, S., Latham, P.E., Pouget, A.: Nat. Neurosci. 2, 740–745 (1999)CrossRefGoogle Scholar
  48. 48.
    DerChang, K., Tang, S., Karpov, I.V., Dodge, R., Klehn, B., Kalb, J.A., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Kuo-wei, C., Papagianni, C., Jinwook, L., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H.: Spadini G A stackable cross point Phase Change Memory. In: IEEE International Electron Devices Meeting, vol. 7–9, pp. 1–4 (2009)Google Scholar
  49. 49.
    Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: Science 345, 668–673 (2014)CrossRefGoogle Scholar
  50. 50.
    Gehlhaar, J.: Neuromorphic processing: a new frontier in scaling computer architecture. In: Architectural Support for Programming Languages and Operating Systems, Salt Lake City, UT, USA, pp. 317–318 (2014)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.Center for Electronic Materials ResearchKorea Institute of Science and TechnologySeongbuk-gu, SeoulRepublic of Korea

Personalised recommendations