Overview of Wireless Optical Communication Systems

  • Hemani Kaushal
  • V. K. Jain
  • Subrat Kar
Part of the Optical Networks book series (OPNW)


The last few decades have seen rapid advances in information and communication technology. We commonly use broadband technology with high-speed Internet connectivity at our homes, offices, and in our mobile devices. The bandwidth and high-capacity requirements due to the increased use of Internet and broadband services have exceeded our expectations in twenty-first century. Wireless optical communication (WOC) uses optical carrier in the near-infrared (IR) and visible bands and is considered a viable solution for realizing very high-speed and large-capacity communication links. It is a line-of-sight communication using a laser to transmit the information signal between two transceivers over an unguided channel which may be either the atmosphere or free space.


Shot Noise Beam Divergence Coherent Detection Optical Carrier Homodyne Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.F. Lucy, K. Lang, Optical communications experiments at 6328 Å and 10. 6 μ. Appl. Opt. 7 (10), 1965–1970 (1968)Google Scholar
  2. 2.
    M.S. Lipsett, C. McIntyre, R. Liu, Space instrumentation for laser communications. IEEE J. Quantum Electron. 5 (6), 348–349 (1969)CrossRefGoogle Scholar
  3. 3.
    I. Arruego, H. Guerrero, S. Rodriguez, J. Martinez-Oter et al., OWLS: a ten-year history in optical wireless links for intra-satellite communications. IEEE J. Sel. Areas Commun. 27 (9), 1599–1611 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Kazemlou, S. Hranilovic, S. Kumar, All-optical multihop free-space optical communication systems. J. Lightwave Technol. 29 (18), 2663–2669 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Hirabayashi, T. Yamamoto, S. Hino, Optical backplane with free-space optical interconnections using tunable beam deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch. Opt. Eng. 37, 1332–1342 (2004)Google Scholar
  6. 6.
    N. Savage, Linking with light. IEEE Spectr. (2002). [Weblink: http://spectrum.ieee.org/semiconductors/optoelectronics/linking-with-light]
  7. 7.
    G. Forrester, Free space optics, in Digital Air Wireless. [Weblink: http://www.digitalairwireless.com/wireless-blog/2013-07/free-space-optics.html]
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    L.C. Andrews, R.L. Phillips, Laser Beam Propagation through Random Medium, 2nd edn. (SPIE Optical Engineering Press, Bellinghan, 1988)Google Scholar
  13. 13.
    www.laserlink.co.uk. Technical report
  14. 14.
    A.M. Street, P.N. Stavrinou, D.C. O’Brien, D.J. Edward, Indoor optical wireless systems – a review. Opt. Quantum Electron. 29, 349–378 (1997)CrossRefGoogle Scholar
  15. 15.
    Z. Ghassemlooy, A. Hayes, Indoor optical wireless communication systems – part I: review. Technical report (2003)Google Scholar
  16. 16.
    A.P. Tang, J.M. Kahn, K.P. Ho, Wireless infrared communication links using multi-beam transmitters and imaging receivers, in Proceedings of IEEE International Conference on Communications, Dallas, 1996, pp. 180–186Google Scholar
  17. 17.
    J.B. Carruthers, J.M. Kahn, Angle diversity for nondirected wireless infrared communication. IEEE Trans. Commun. 48 (6), 960–969 (2000)CrossRefGoogle Scholar
  18. 18.
    G. Yun, M. Kavehrad, Spot diffusing and fly-eye receivers for indoor infrared wireless communications, in Proceedings of the 1992 IEEE Conference on Selected Topics in Wireless Communications, Vancouver, 1992, pp. 286–292Google Scholar
  19. 19.
    R. Ramirez-Iniguez, R.J. Green, Indoor optical wireless communications, in IEE Colloquium on Optical Wireless Communication, vol. 128 (IET, 1999), pp. 14/1–14/7. [Weblink: http://ieeexplore.ieee.org/abstract/document/793885/]
  20. 20.
    J. Li, J.Q. Liu, D.P. Taylor, Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Trans. Commun. 55 (8), 1598–1606 (2007)CrossRefGoogle Scholar
  21. 21.
    J.H. Franz, V.K. Jain, Optical Communications: Components and Systems (Narosa Publishing House, Boca Raton, 2000)Google Scholar
  22. 22.
    H. Hemmati, Deep Space Optical Communications (John Wiley & Sons, Hoboken, 2006)CrossRefGoogle Scholar
  23. 23.
    A. Jurado-Navas, J.M. Garrido-Balsells, J. Francisco Paris, M. Castillo-Vázquez, A. Puerta-Notario, Impact of pointing errors on the performance of generalized atmospheric optical channels. Opt. Exp. 20 (11), 12550–12562 (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Weblink: http://www.cie.co.at/, 28 Feb 2012
  25. 25.
    O. Bader, C. Lui, Laser safety and the eye: hidden hazards and practical pearls. Technical report: American Academy of Dermatology, Lion Laser Skin Center, Vancouver and University of British Columbia, Vancouver, B.C., 1996Google Scholar
  26. 26.
    G.D. Fletcher, T.R. Hicks, B. Laurent, The SILEX optical interorbit link experiment. IEEE J. Electr. Commun. Eng. 3 (6), 273–279 (2002)CrossRefGoogle Scholar
  27. 27.
    K.E. Wilson, An overview of the GOLD experiment between the ETS-VI satellite and the table mountain facility. TDA progress report 42-124, Communication Systems Research Section, pp. 8–19, 1996. [Weblink: https://ntrs.nasa.gov/search.jsp?R=19960022219]
  28. 28.
    T. Dreischer, M. Tuechler, T. Weigel, G. Baister, P. Regnier, X. Sembely, R. Panzeca, Integrated RF-optical TT & C for a deep space mission. Acta Astronaut. 65 (11), 1772–1782 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Baister, K. Kudielka, T. Dreischer, M. Tüchler, Results from the DOLCE (deep space optical link communications experiment) project. Proc. SPIE Free-Space Laser Commun. Technol. XXI 7199, 71990B-1–71990B-9 (2009)Google Scholar
  30. 30.
    D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman et al., Mars orbiter laser altimeter: experiment summary after first year of global mapping of Mars. J. Geophys. Res. 106 (E10), 23689–23722 (2001)CrossRefGoogle Scholar
  31. 31.
    General Atomics Aeronautical Systems, Inc., GA-ASI and TESAT Partner to Develop RPA-to-spacecraft Lasercom Link, 2012. [Weblink: http://www.ga-asi.com/ga-asi-and-tesat-partner-to-develop-rpa-to-spacecraft-lasercom-link]
  32. 32.
    G.G. Ortiz, S. Lee, S.P. Monacos, M.W. Wright, A. Biswas, Design and development of a robust ATP subsystem for the altair UAV-to-ground lasercomm 2.5-Gbps demonstration. Proc. SPIE Free-Space Laser Commun. Technol. XV 4975, 1–12 (2003)Google Scholar
  33. 33.
    D. Isbel, F. O’Donnell, M. Hardin, H. Lebo, S. Wolpert, S. Lendroth, Mars polar lander/deep space 2. Technical report, National Aeronautics and Space Administration, 1999Google Scholar
  34. 34.
    Y. Hu, K. Powell, M. Vaughan, C. Tepte, C. Weimer et al., Elevation Information in Tail (EIT) technique for lidar altimetry. Opt. Exp. 15 (22), 14504–14515 (2007)CrossRefGoogle Scholar
  35. 35.
    N. Perlot, M. Knapek, D. Giggenbach, J. Horwath, M. Brechtelsbauer et al., Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station oberpfaffenhofen (OGS-OP). Proc. SPIE, Free-Space Laser Commun. Technol. XIX Atmos. Prop. Electromag. Waves 6457, 645704–1–645704–8 (2007)Google Scholar
  36. 36.
    V. Cazaubiel, G. Planche, V. Chorvalli, L. Hors, B. Roy, E. Giraud, L. Vaillon, F. Carré, E. Decourbey, LOLA: a 40,000 km optical link between an aircraft and a geostationary satellite, in Proceedings of 6th International Conference on Space Optics, Noordwijk, June 2006Google Scholar
  37. 37.
    R. Beer, T.A. Glavich, D.M. Rider, Tropospheric emission spectrometer for the Earth observing system’s Aura satellite. Appl. Opt. 40 (15), 2356–2367 (2001)CrossRefGoogle Scholar
  38. 38.
    K.E. Wilson, J.R. Lesh, An overview of Galileo optical experiment (GOPEX). Technical report: TDA progress report 42-114, Communication Systems Research Section, NASA, 1993Google Scholar
  39. 39.
    K. Nakamaru, K. Kondo, T. Katagi, H. Kitahara, M. Tanaka, An overview of Japan’s Engineering Test Satellite VI (ETS-VI) project, in Proceedings of IEEE, Communications, International Conference on World Prosperity Through Communications, Boston, vol. 3, 1989, pp. 1582–1586Google Scholar
  40. 40.
    Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, B.a. Demelenne, Optical inter-orbit communications engineering test satellite (OICETS). Acta Astronaut. 61 (1–6), 163–175 (2007). ElsevierGoogle Scholar
  41. 41.
    K. Pribil, J. Flemmig, Solid state laser communications in space (solacos) high data rate satellite communication system verification program. Proc. SPIE, Space Instrum. Spacecr. Opt. 2210 (39), 39–49 (1994)Google Scholar
  42. 42.
    Z. Sodnik, H. Lutz, B. Furch, R. Meyer, Optical satellite communications in Europe. Proc. SPIE, Free-Space Laser Commun. Technol. XXII 7587, 758705-1–758705-9 (2010)Google Scholar
  43. 43.
    R.M. Gagliardi, S. Karp, Optical Communications, 2nd edn. (John Wiley & Sons, New York, 1995)Google Scholar
  44. 44.
    X. Zhu, J.M. Kahn, Free space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50 (8), 1293–1300 (2002)CrossRefGoogle Scholar
  45. 45.
    R.J. McIntyre, The distribution of gains in uniformly multiplying avalanche photodiodes: theory. IEEE Trans. Electron Devices 19 (6), 703–713 (1972)CrossRefGoogle Scholar
  46. 46.
    P.P. Webb, R.J. McIntyre, J. Conradi, Properties of avalanche photodiodes. RCA Rev. 35, 234–278 (1974)Google Scholar
  47. 47.
    M. Srinivasan, V. Vilnrotter, Symbol-error probabilities for pulse position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise. TMO progress report 42–134, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Aug 1998Google Scholar
  48. 48.
    W.O. Popoola, Z. Ghassemlooy, BPSK subcarrier intensity modulated free-space optical communication in atmospheric turbulence. J. Lightwave Technol. 27 (8), 967–973 (2009)CrossRefGoogle Scholar
  49. 49.
    D. Barros, S. Wilson, J. Kahn, Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans. Commun. 60 (1), 153–163 (2012)CrossRefGoogle Scholar
  50. 50.
  51. 51.
    Safety of laser products-part 12: safety of free space optical communication systems used for transmission of information. Technical report: IEC 60825-12, 2004Google Scholar
  52. 52.

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Hemani Kaushal
    • 1
  • V. K. Jain
    • 2
  • Subrat Kar
    • 2
  1. 1.Electronics and CommunicationThe NorthCap UniversityGurgaonIndia
  2. 2.Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations