Skip to main content

Circadian Rhythms Versus Daily Patterns in Human Physiology and Behavior

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

The endogenous circadian timekeeping system modulates human physiology and behavior with a near 24 h periodicity conferring adaptation to the ~24 h solar light-dark cycle. Thus, the circadian timekeeping system times physiology and behavior so that it is prepared for environmental changes. The term circadian implies an endogenous “clock-driven” process. However, not all observed daily patterns in physiology and behavior are clock driven and instead may be due to environmental or behavioral factors. For example, the barren rock on the top of a mountain shows a daily temperature oscillation that is not endogenous to the rock but instead is caused by the sun heating the rock during the day and radiative heat loss after sunset. Other factors such as wind, rain, and cloud cover impact the observed daily temperature oscillation of the rock. Similarly, some of the daily patterns observed in physiology and behavior are driven by external factors, while others arise from the interaction between circadian and behavioral processes (e.g., sleep-wake, fasting-feeding). To improve understanding of the mechanisms underlying observed daily patterns in physiology and behavior in humans, a variety of circadian protocols have been implemented (Tables 13.1 and 13.2). These protocols will be reviewed in the following pages, and the strengths and limitations of each will be discussed. First, we review markers of the endogenous clock in humans.

Table 13.1 Comparison of common experimental procedures for circadian protocols
Table 13.2 Outcomes derived from circadian protocols

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suggested readings in the reference section are denoted with an asterisk (*).

References

Suggested readings in the reference section are denoted with an asterisk (*).

  1. Stopa EG, King JC, Lydic R, Schoene WC (1984) Human brain contains vasopressin and vasoactive intestinal polypeptide neuronal subpopulations in the suprachiasmatic region. Brain Res 297:159–163

    Article  CAS  PubMed  Google Scholar 

  2. Lydic R, Schoene WC, Czeisler CA, Moore-Ede MC (1980) Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker? Sleep 2:355–361

    CAS  PubMed  Google Scholar 

  3. Brown SA et al (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3, e338. doi:10.1371/journal.pbio.0030338

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boivin DB et al (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145. doi:10.1182/blood-2003-03-0779

    Article  CAS  PubMed  Google Scholar 

  5. Gomez-Santos C et al (2009) Circadian rhythm of clock genes in human adipose explants. Obesity 17:1481–1485. doi:10.1038/oby.2009.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saini C et al (2016) A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes Metab 18:355–365. doi:10.1111/dom.12616

    Article  CAS  PubMed  Google Scholar 

  7. Perrin L et al (2015) Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab 4:834–845. doi:10.1016/j.molmet.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaspar L, Brown SA (2015) Measuring circadian clock function in human cells. Methods Enzymol 552:231–256. doi:10.1016/bs.mie.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  9. Burke TM et al (2015) Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med 7:305ra146. doi:10.1126/scitranslmed.aac5125

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davidson AJ, Castanon-Cervantes O, Stephan FK (2004) Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int 24:179–186. doi:10.1111/j.1478-3231.2004.0917.x

    Article  PubMed  Google Scholar 

  11. Davidson AJ, London B, Block GD, Menaker M (2005) Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens 27:307–311

    Article  CAS  PubMed  Google Scholar 

  12. Storch KF et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83. doi:10.1038/nature744

    Article  CAS  PubMed  Google Scholar 

  13. Zvonic S et al (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  CAS  PubMed  Google Scholar 

  14. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503. doi:10.1038/nature09702

    Article  PubMed  PubMed Central  Google Scholar 

  15. *Klerman EB, Gershengorn HB, Duffy JF, Kronauer RE (2002) Comparisons of the variability of three markers of the human circadian pacemaker. J Biol Rhythms 17:181–193

    Google Scholar 

  16. Klerman H et al (2012) Analysis method and experimental conditions affect computed circadian phase from melatonin data. PLoS ONE 7, e33836. doi:10.1371/journal.pone.0033836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. *Czeisler CA, et al (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284:2177–2181

    Google Scholar 

  18. *Wright KP Jr., Hughes RJ, Kronauer RE, Dijk DJ, Czeisler CA (2001) Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci U S A 98:14027–14032. doi:10.1073/pnas.201530198

  19. Voultsios A, Kennaway DJ, Dawson D (1997) Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythm 12:457–466

    Article  CAS  Google Scholar 

  20. Wright KP Jr, Gronfier C, Duffy JF, Czeisler CA (2005) Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J Biol Rhythm 20:168–177. doi:10.1177/0748730404274265

    Article  Google Scholar 

  21. Wright KP Jr et al (2013) Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol 23:1554–1558. doi:10.1016/j.cub.2013.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burgess HJ, Fogg LF (2008) Individual differences in the amount and timing of salivary melatonin secretion. PLoS ONE 3, e3055. doi:10.1371/journal.pone.0003055

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moore RY (1996) Neural control of the pineal gland. Behav Brain Res 73:125–130

    Article  CAS  PubMed  Google Scholar 

  24. *Lewy AJ, Cutler NL, Sack RL (1999) The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms 14:227–236

    Google Scholar 

  25. Buijs RM et al (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544

    Article  CAS  PubMed  Google Scholar 

  26. Czeisler CA, Wright KP (1999) In: Zee PC, Turek FW (eds) Regulation of sleep and circadian rhythms. Marcel Dekker, New York, pp 147–180

    Google Scholar 

  27. Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. J Physiol 285:455–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung CM et al (2011) Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 589:235–244. doi:10.1113/jphysiol.2010.197517

    Article  CAS  PubMed  Google Scholar 

  29. *Czeisler CA, Klerman EB (1999) Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res 54:97–130. discussion 130–132

    Google Scholar 

  30. Waterhouse J et al (1999) The effect of activity on the waking temperature rhythm in humans. Chronobiol Int 16:343–357

    Article  CAS  PubMed  Google Scholar 

  31. *Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    Google Scholar 

  32. Wright KP Jr et al (2015) Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun 47:24–34. doi:10.1016/j.bbi.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Gribbin CE, Watamura SE, Cairns A, Harsh JR, Lebourgeois MK (2012) The cortisol awakening response (CAR) in 2- to 4-year-old children: effects of acute nighttime sleep restriction, wake time, and daytime napping. Dev Psychobiol 54:412–422. doi:10.1002/dev.20599

    Article  CAS  PubMed  Google Scholar 

  34. Scheer FA, Wright KP Jr, Kronauer RE, Czeisler CA (2007) Plasticity of the intrinsic period of the human circadian timing system. PLoS ONE 2, e721. doi:10.1371/journal.pone.0000721

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klerman EB, Lee Y, Czeisler CA, Kronauer RE (1999) Linear demasking techniques are unreliable for estimating the circadian phase of ambulatory temperature data. J Biol Rhythm 14:260–274

    Article  CAS  Google Scholar 

  36. Moul DE, Ombao H, Monk TH, Chen Q, Buysse DJ (2002) Masking effects of posture and sleep onset on core body temperature have distinct circadian rhythms: results from a 90-min/day protocol. J Biol Rhythm 17:447–462

    Article  Google Scholar 

  37. McHill AW et al (2014) Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci U S A 111:17302–17307. doi:10.1073/pnas.1412021111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LeBourgeois MK et al (2013) Circadian phase and its relationship to nighttime sleep in toddlers. J Biol Rhythm 28:322–331. doi:10.1177/0748730413506543

    Article  CAS  Google Scholar 

  39. Burgess HJ, Wyatt JK, Park M, Fogg LF (2015) Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. Sleep 38:889–897. doi:10.5665/sleep.4734

    PubMed  PubMed Central  Google Scholar 

  40. Pullman RE, Roepke SE, Duffy JF (2012) Laboratory validation of an in-home method for assessing circadian phase using dim light melatonin onset (DLMO). Sleep Med 13:703–706. doi:10.1016/j.sleep.2011.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aschoff J, Gerecke U, Wever R (1967) Desynchronization of human circadian rhythms. Jpn J Physiol 17:450–457

    Article  CAS  PubMed  Google Scholar 

  42. Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch - Eur J Physiol 391:314–318

    Article  CAS  Google Scholar 

  43. Czeisler CA, Weitzman E, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267

    Article  CAS  PubMed  Google Scholar 

  44. Aschoff J, Wever R (1976) Human circadian rhythms: a multioscillatory system. Fed Proc 35:236–232

    CAS  PubMed  Google Scholar 

  45. Campbell SS, Dawson D, Zulley J (1993) When the human circadian system is caught napping: evidence for endogenous rhythms close to 24 hours. Sleep 16:638–640

    CAS  PubMed  Google Scholar 

  46. Phillips AJ, Czeisler CA, Klerman EB (2011) Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology. J Biol Rhythm 26:441–453. doi:10.1177/0748730411414163

    Article  Google Scholar 

  47. Middleton B, Arendt J, Stone BM (1997) Complex effects of melatonin on human circadian rhythms in constant dim light. J Biol Rhythm 12:467–477

    Article  CAS  Google Scholar 

  48. Middleton B, Arendt J, Stone BM (1996) Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time. J Sleep Res 5:69–76

    Article  CAS  PubMed  Google Scholar 

  49. *Kleitman N (1939) Sleep and wakefulness. The University of Chicago Press, Chicago

    Google Scholar 

  50. Darwent D et al (2010) Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony. Chronobiol Int 27:898–910. doi:10.3109/07420528.2010.488621

    Article  PubMed  Google Scholar 

  51. Dijk DJ, Duffy JF, Czeisler CA (1992) Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res 1:112–117

    Article  CAS  PubMed  Google Scholar 

  52. Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68

    Article  CAS  PubMed  Google Scholar 

  53. Duffy JF et al (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108(Suppl 3):15602–15608. doi:10.1073/pnas.1010666108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gronfier C, Wright KP Jr, Kronauer RE, Czeisler CA (2007) Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A 104:9081–9086. doi:10.1073/pnas.0702835104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (1999) Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Phys 277:R1152–R1163

    CAS  Google Scholar 

  56. *Zhou X et al (2012) Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night. J Sleep Res 21:40–49. doi:10.1111/j.1365-2869.2011.00924.x

  57. Ferguson SA et al (2012) The influence of circadian time and sleep dose on subjective fatigue ratings. Accid Anal Prev 45(Suppl):50–54. doi:10.1016/j.aap.2011.09.026

    Article  PubMed  Google Scholar 

  58. Zhou X et al (2011) Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony. Sleep 34:931–941. doi:10.5665/SLEEP.1130

    PubMed  PubMed Central  Google Scholar 

  59. Matthews RW et al (2012) Simulated driving under the influence of extended wake, time of day and sleep restriction. Accid Anal Prev 45(Suppl):55–61. doi:10.1016/j.aap.2011.09.027

    Article  PubMed  Google Scholar 

  60. Sargent C, Darwent D, Ferguson SA, Kennaway DJ, Roach GD (2012) Sleep restriction masks the influence of the circadian process on sleep propensity. Chronobiol Int 29:565–571. doi:10.3109/07420528.2012.675256

    Article  PubMed  Google Scholar 

  61. Paech GM, Ferguson SA, Sargent C, Kennaway DJ, Roach GD (2012) The relative contributions of the homeostatic and circadian processes to sleep regulation under conditions of severe sleep restriction. Sleep 35:941–948. doi:10.5665/sleep.1956

    PubMed  PubMed Central  Google Scholar 

  62. Kosmadopoulos A et al (2015) The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment. Accid Anal Prev. doi:10.1016/j.aap.2015.10.014

    Google Scholar 

  63. Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, Czeisler CA (1997) Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. J Physiol 505(Pt 3):851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carskadon MA, Dement WC (1975) Sleep studies on a 90-minute day. Electroencephalogr Clin Neurophysiol 39:145–155

    Article  CAS  PubMed  Google Scholar 

  65. Tzischinsky O, Shlitner A, Lavie P (1993) The association between the nocturnal sleep gate and nocturnal onset of urinary 6-sulfatoxymelatonin. J Biol Rhythm 8:199–209

    Article  CAS  Google Scholar 

  66. Eastman CI, Molina TA, Dziepak ME, Smith MR (2012) Blacks (African Americans) have shorter free-running circadian periods than whites (Caucasian Americans). Chronobiol Int 29:1072–1077. doi:10.3109/07420528.2012.700670

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eastman CI, Suh C, Tomaka VA, Crowley SJ (2015) Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans. Sci Rep 5:8381. doi:10.1038/srep08381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Micic G et al (2013) The endogenous circadian temperature period length (tau) in delayed sleep phase disorder compared to good sleepers. J Sleep Res 22:617–624. doi:10.1111/jsr.12072

    Article  PubMed  Google Scholar 

  69. Lockley SW et al (2000) Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 164:R1–R6

    Article  CAS  PubMed  Google Scholar 

  70. Shea SA, Hilton MF, Hu K, Scheer FA (2011) Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res 108:980–984. doi:10.1161/CIRCRESAHA.110.233668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou X et al (2011) Dynamics of neurobehavioral performance variability under forced desynchrony: evidence of state instability. Sleep 34:57–63

    PubMed  PubMed Central  Google Scholar 

  72. Sargent C, Zhou X, Matthews RW, Darwent D, Roach GD (2016) Daily rhythms of hunger and satiety in healthy men during one week of sleep restriction and circadian misalignment. Int J Environ Res Public Health 13:170. doi:10.3390/ijerph13020170

    Article  PubMed  PubMed Central  Google Scholar 

  73. Burke TM, Scheer FA, Ronda JM, Czeisler CA, Wright KP Jr (2015) Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J Sleep Res 24:364–371. doi:10.1111/jsr.12291

    Article  PubMed  PubMed Central  Google Scholar 

  74. Scheer FA, Morris CJ, Shea SA (2013) The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity 21:421–423. doi:10.1002/oby.20351

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lo JC et al (2012) Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS ONE 7, e45987. doi:10.1371/journal.pone.0045987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Broussard JL et al (2015) Sleep restriction increases free fatty acids in healthy men. Diabetologia 58:791–798. doi:10.1007/s00125-015-3500-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Broussard JL et al (2016) Elevated ghrelin predicts food intake during experimental sleep restriction. Obesity 24:132–138. doi:10.1002/oby.21321

    Article  CAS  PubMed  Google Scholar 

  78. Goichot B et al (1998) Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock. Am J Phys 275:E243–E248

    CAS  Google Scholar 

  79. Morris CJ et al (2015) The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity 23:2053–2058. doi:10.1002/oby.21189

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mohr U, Hondius Boldingh W, Althoff J (1972) Identification of contaminating Clostridium spores as the oncolytic agent in some chalone preparations. Cancer Res 32:1117–1121

    CAS  PubMed  Google Scholar 

  81. Scheer FA et al (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A 107:20541–20546. doi:10.1073/pnas.1006749107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morris CJ et al (2015) Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci U S A 112:E2225–E2234. doi:10.1073/pnas.1418955112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458. doi:10.1073/pnas.0808180106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buxton OM et al (2012) Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4:129ra143. doi:10.1126/scitranslmed.3003200

    Article  Google Scholar 

  85. Hu K, Scheer FA, Laker M, Smales C, Shea SA (2011) Endogenous circadian rhythm in vasovagal response to head-up tilt. Circulation 123:961–970. doi:10.1161/CIRCULATIONAHA.110.943019

    Article  PubMed  PubMed Central  Google Scholar 

  86. Duffy JF, Lowe AS, Silva EJ, Winkelman JW (2011) Periodic limb movements in sleep exhibit a circadian rhythm that is maximal in the late evening/early night. Sleep Med 12:83–88. doi:10.1016/j.sleep.2010.06.007

    Article  PubMed  Google Scholar 

  87. Davies SK et al (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111:10761–10766. doi:10.1073/pnas.1402663111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ang JE et al (2012) Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int 29:868–881. doi:10.3109/07420528.2012.699122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24:476–493. doi:10.1111/jsr.12307

    Article  PubMed  Google Scholar 

  90. Moller-Levet CS et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110:E1132–E1141. doi:10.1073/pnas.1217154110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Archer SN et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111:E682–E691. doi:10.1073/pnas.1316335111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth P. Wright Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Broussard, J.L., Reynolds, A.C., Depner, C.M., Ferguson, S.A., Dawson, D., Wright, K.P. (2017). Circadian Rhythms Versus Daily Patterns in Human Physiology and Behavior. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_13

Download citation

Publish with us

Policies and ethics