Origins: A Brief Account of the Ancestry of Circadian Biology

  • William J. Schwartz
  • Serge Daan


Who were the investigators and what was the path that enabled the launch of modern mechanistic research on circadian biology in the 1970s? Here we trace the origins of ideas from antiquity to the experimental study of the daily movements of leaves; on to the twentieth-century realization that circadian rhythms are widespread, endogenous, and innate; and finally to the appreciation that such rhythms could be utilized by organisms for the measurement of time. The conceptualization of the internal “clock” metaphor was key to the wave of mathematical, neurobiological, and molecular genetic advances that has transformed the field over the last 50 years.


Circadian Rhythm Circadian Clock Neurospora Crassa Nobel Laureate Deer Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bünning E (1977) Fifty years of research in the wake of Wilhelm Pfeffer. Annu Rev Plant Physiol 28:1–22CrossRefGoogle Scholar
  2. 2.
    Aschoff J (1990) Sources of thoughts: from temperature regulation to rhythm research. Chronobiol Int 7:179–186CrossRefPubMedGoogle Scholar
  3. 3.
    Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:17–54CrossRefGoogle Scholar
  4. 4.
    Daan S (2010) A history of chronobiological concepts. In: Albrecht U (ed) Protein reviews, vol 12. Springer Verlag, New York, pp 1–35Google Scholar
  5. 5.
    Franklin B (1735) Poor Richard’s AlmanackGoogle Scholar
  6. 6.
    Boswell J (1785) The journal of a tour to the Hebrides with Samuel Johnson, LL.D. (Entry of September 14, 1773)Google Scholar
  7. 7.
    Bruce E (January 26, 2011) Early to bed, early to rise [blog post]. Retrieved from
  8. 8.
    de Mairan JJO (1729) Observation botanique. Histoire de l’Academie Royale des Sciences. French Academie des Sciences, Paris, p. 35. Retrieved from
  9. 9.
    Hill J (1757) The sleep of plants, and cause of motion in the sensitive plant, explain’d. In a letter to C. Linnaeus. Baldwin, LondonGoogle Scholar
  10. 10.
    Duhamel du Monceau H-L (1759) La Physique des Arbres, vol 2. Guerin & Delatour, Paris, p 159Google Scholar
  11. 11.
    Zinn JG (1759) Von dem Schlafe der Plfanzen. Hamburgisches Mag 22:40–50Google Scholar
  12. 12.
    de Candolle AP (1813) Théorie élémentaire de la botanique; ou, Exposition des principes de la classification naturelle et de l’art de décrire et d’étudier les végétaux. Déterville, ParisGoogle Scholar
  13. 13.
    de Candolle AP (1832) Du movement de plantes. In: Physiologie Végétale; ou, Exposition des forces et des fonctions vitals des végétaux. Vol 2, Livre IV, Chapitre VI. Paris: Béchet jeune, pp 853–62.Google Scholar
  14. 14.
    Sachs J (1863) Die vorübergehenden Starre-Zustände periodisch beweglicher und reizbarer Pflanzenorgane. II Die vorübergehende Dunkelstarre. Flora 30:469Google Scholar
  15. 15.
    Pfeffer W (1875) Die Periodischen Bewegungen der Blattorgane. Verlag Wilhelm Engelmann, LeipzigCrossRefGoogle Scholar
  16. 16.
    Darwin CR, Darwin F (1880) The power of movement in plants. John Murray, LondonCrossRefGoogle Scholar
  17. 17.
    Semon R (1905) Über die Erblichkeit der Tagesperiode. Biologisches Centralblatt 25:241–252Google Scholar
  18. 18.
    Pfeffer W (1907) Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane. Abh Math Phys Klasse Kg Sächsischen Ges Wiss 30:257–472Google Scholar
  19. 19.
    Pfeffer W (1915) Beiträge zur Kenntnis der Entstehung der Schlafbewegungen. Abh Math Phys Klasse Kg Sächsischen Ges Wiss 34:1–154Google Scholar
  20. 20.
    Kleinhoonte A (1928) De door het licht geregelde autonome bewegingen der Canavalia-bladeren. Meinema, Delft, 142 ppGoogle Scholar
  21. 21.
    Halberg F, Halberg E, Barnum CP, Bitner JJ (1959) Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Withrow RB (ed) Photoperiodism and related phenomena in plant and animals. AAAS, Washington, DC, pp 803–878Google Scholar
  22. 22.
    Bünning E, Stern K (1930) Über die tagesperiodischen Bewegungen der Primärblätter von Phaseolus multiflorus. II. Die Bewegungen bei Thermo-konstanz. Ber Dtsch Botanischen Ges 48:227–252Google Scholar
  23. 23.
    Bünning E (1932) Über die Erblichket der Tagesperiodizitat bei den Phaseolus-Blättern. Jahrb Wiss Bot 77:283–320Google Scholar
  24. 24.
    Bünning E (1935) Zur Kenntnis der erblichen Tagesperiodizitat bei den Primarblattern von Phaseolus multiflorus. Jahrb Wiss Bot 81:411–418Google Scholar
  25. 25.
    Kalmus H (1935) Periodizität und Autochronie (= Ideochronie) als zeitregelnde Eigenschaften der Organismen. Biol Gen 11:93–114Google Scholar
  26. 26.
    Bünning E (1935) Zur Kenntnis der endonomen Tagesrhythmik bei Insekten und bei Pflanzen. Ber Dtsch Botanischen Ges 53:594–623Google Scholar
  27. 27.
    Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1:1–54Google Scholar
  28. 28.
    Richter CP, Wang GH (1926) New apparatus for measuring the spontaneous motility of animals. J Lab Clin Med 12:289–292Google Scholar
  29. 29.
    Stewart CC (1898) Variations in daily activity produced by alcohol and by changes in barometric pressure and diet, with a description of recording methods. Am J Physiol 1:40–56Google Scholar
  30. 30.
    Simpson S, Galbraith JJ (1906) Observations on the normal temperature of the monkey and its diurnal variation, and on the effect of changes in the daily routine on this variation. Trans R Soc Edinb 45:65–104CrossRefGoogle Scholar
  31. 31.
    Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, ChicagoGoogle Scholar
  32. 32.
    Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274CrossRefPubMedGoogle Scholar
  33. 33.
    Aschoff J (1947) Einige allgemeine Gesetzmässigkeiten physikalischer Temperaturregulation. Pflugers Arch 249:125–136CrossRefGoogle Scholar
  34. 34.
    Aschoff J, Wever R (1962) Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 49:337–342CrossRefGoogle Scholar
  35. 35.
    Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432CrossRefPubMedGoogle Scholar
  36. 36.
    Virey J-J (1814) Ephémérides de al vie humaine; ou, Recherches sur la révolution journalière et la périodicité de ses phénomènes dans la santé et les maladies. Thèse Fac Méd, Sorbonne, ParisGoogle Scholar
  37. 37.
    Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Botanischen Ges 54:590–607Google Scholar
  38. 38.
    Johnson MS (1939) Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). J Exp Zool 82:315–328CrossRefGoogle Scholar
  39. 39.
    Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458CrossRefGoogle Scholar
  40. 40.
    DeCoursey PJ (1960) Daily light sensitivity rhythm in a rodent. Science 131:33–35CrossRefGoogle Scholar
  41. 41.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129CrossRefGoogle Scholar
  42. 42.
    Kalmus H (1940) Diurnal rhythms in the axolotl larva and in Drosophila. Nature 145:72–73CrossRefGoogle Scholar
  43. 43.
    Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. In: Chovnick A, editors. Biological clocks. Cold Spring Harb Symp Quant Biol 25:159–84.Google Scholar
  44. 44.
    Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci U S A 40:1018–1029CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378CrossRefGoogle Scholar
  46. 46.
    Hoffman K (1965) Clock-mechanisms in celestial orientation of animals. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 426–441Google Scholar
  47. 47.
    Lorenz K (1959) Gustav Kramer†. J Ornithol 100:265–268CrossRefGoogle Scholar
  48. 48.
    Frisch K v (1950) Die Sonne als Kompaß im Leben der Bienen. Experientia 6:210–221CrossRefGoogle Scholar
  49. 49.
    Beling I (1929) Über das Zeitgedächtnis der Bienen. Z Vergleichende Physiol 9:259–338CrossRefGoogle Scholar
  50. 50.
    Chovnik A (ed) (1960) Biological clocks. Cold Spring Harbor symposia on quantitative biology, vol 25. The Biological Laboratory, Cold Spring HarborGoogle Scholar
  51. 51.
    Hamner KC, Finn JC Jr, Sirohi GS, Hoshizaki T, Carpenter BH (1962) The biological clock at the South Pole. Nature 195:476–480CrossRefGoogle Scholar
  52. 52.
    Sulzman FM, Ellman D, Fuller CA, Moore-Ede MC, Wassmer G (1984) Neurospora circadian rhythms in space: a reexamination of the endogenous-exogenous question. Science 225:232–234CrossRefPubMedGoogle Scholar
  53. 53.
    Winfree AT (1970) Integrated view of the resetting of a circadian clock. J Theor Biol 28:327–374CrossRefPubMedGoogle Scholar
  54. 54.
    Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, New York, pp 566–585CrossRefGoogle Scholar
  55. 55.
    Pittendrigh CS, Bruce VG (1957) An oscillator model for biological clocks. In: Rudnick D (ed) Rhythmic and synthetic processes in growth. Princeton University Press, Princeton, pp 75–109Google Scholar
  56. 56.
    Eskin A (1979) Identification and physiology of circadian pacemakers. Fed Proc Fed Am Soc Exp Biol 38:2570–2572Google Scholar
  57. 57.
    Truman JW, Riddiford LM (1970) Neuroendocrine control of ecdysis in silkmoths. Science 167:1624–1626CrossRefPubMedGoogle Scholar
  58. 58.
    Handler AM, Konopka RJ (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279:236–238CrossRefPubMedGoogle Scholar
  59. 59.
    Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75CrossRefPubMedGoogle Scholar
  60. 60.
    Zimmerman NH, Menaker M (1979) The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci U S A 76:999–1003CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206CrossRefPubMedGoogle Scholar
  63. 63.
    Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978CrossRefPubMedGoogle Scholar
  64. 64.
    Andrews RV, Folk GE Jr (1964) Circadian metabolic patterns in cultured hamster adrenal glands. Comp Biochem Physiol 11:393–409CrossRefPubMedGoogle Scholar
  65. 65.
    Tharp GD, Folk GE Jr (1965) Rhythmic changes in rate of the mammalian heart and heart cells during prolonged isolation. Comp Biochem Physiol 14:255–273CrossRefPubMedGoogle Scholar
  66. 66.
    Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neurospora: a biological clock in Neurospora. Nature 184:169–170CrossRefGoogle Scholar
  67. 67.
    Feldman JF, Hoyle MN (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613PubMedPubMedCentralGoogle Scholar
  68. 68.
    Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Benzer S (n.d.) Interview by Heidi Aspaturian. Pasadena, California, September 11 – February 1991. Oral History Project, California Institute of Technology Archives. Retrieved from
  70. 70.
    Johnson MS (1926) Activity and distribution of certain wild mice in relation to biotic communities. J Mammal 7:245–277CrossRefGoogle Scholar
  71. 71.
    Szymanski JS (1918) Die Verteilung von Ruhe und Aktivitätsperioden bei einigen Tierarten. Pflugers Arch 172:430–448CrossRefGoogle Scholar
  72. 72.
    Aschoff J (ed) (1981) Biological rhythms. Handbook of behavioral neurobiology, vol 4. Plenum Press, New York, 563 ppGoogle Scholar
  73. 73.
    Recording Data (1996) In: The First International Cyberconference on the Psychobiology of Curt P. Richter. Retrieved from:
  74. 74.
    Johnson RF, Moore RY, Morin LP (1988) Running wheel activity in hamsters with hypothalamic damage. Physiol Behav 43:755–763CrossRefPubMedGoogle Scholar
  75. 75.
    Brown FA Jr, Shriner J, Ralph CL (1956) Solar and lunar rhythmicity in the rat in “constant conditions” and the mechanism of physiological time measurement. Am J Physiol 184:491–496PubMedGoogle Scholar
  76. 76.
    Lecture by Dr. Colin Pittendrigh (in three parts) on January 20th, 1992 at the Center for Biological Timing at the University of Virginia: “An Historical Overview of Circadian Biology.” Posted by Bernie Possidente, Skidmore College, Department of Biology on behalf of the Society for Research on Biological Rhythms. Retrieved from
  77. 77.
    Stillman B, Stewart D, Grodzicker T (2007) Clocks and rhythms. Cold Spring Harbor symposia on quantitative biology, vol 72. The Biological Laboratory, Cold Spring Harbor. Retrieved from
  78. 78.
    The Society for Research on Biological Rhythms. Video history collection. Retrieved from
  79. 79.
    Pittendrigh CS (1996) A letter to my friends (posthumous personal communication)Google Scholar
  80. 80.
    Bünning E (1989) Ahead of his time: Wilhelm Pfeffer. Early advances in plant biology. Carleton University Press, Ottawa, p 83Google Scholar
  81. 81.
    Bünning E (1973) The physiological clock, Third English edn. Springer, New York, p 9Google Scholar
  82. 82.
    Schwartz WJ (1987) In vivo metabolic activity of the hamster suprachiasmatic nuclei: use of anesthesia. Am J Physiol 252:R419–R422PubMedGoogle Scholar
  83. 83.
    Ward RR (1971) The living clocks. Alfred Knopf, New York, 385 ppGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands

Personalised recommendations