Advertisement

Asynapsis and Desynapsis in Plants

  • Aijaz Ahmad Wani
  • Tariq Ahmad Bhat
Chapter

Abstract

The pairing of chromosomes also known as synapsis is essential for facilitating crossing over and recombination of genes during prophase-I and segregation of homologous chromosomes during anaphase-I of meiosis. Mutations in genes controlling synapsis affect normal pairing of homologues during prophase-I are give rise to synaptic mutants. The first synaptic mutants were discovered in maize and since then have been reported in large number of plant species. These synaptic mutants show complete or partial lack of chromosome pairing during meiosis. Asynapsis is the complete failure of homologous chromosomes to pair or synapse during the first meiotic division, whereas, desynapsis is a condition where homologous chromosomes pair or synapse normally at the beginning of prophase, but later fail to maintain this association in the subsequent stages of meiosis and thus separate prematurely. Both asynapsis and desynapsis have been found to play significant role in origin of popyploids via formation of 2n gametes. The meiotic disturbance due to asynapsis and desynapsis also leads to the formation of various types of aneuploids..

Keywords

Chromosome Pairing Homologous Chromosome Synaptonemal Complex Meiotic Division Pachytene Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson LK, Stack SM (2002) Meiotic recombination in plants. Curr Genomics 3:507–525CrossRefGoogle Scholar
  2. Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy 1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3644–3655CrossRefGoogle Scholar
  3. Atcheson CL, DiDomenico B, Frackman S, Esposito RE, Elder RT (1987) Isolation, DNA sequence, and regulation of meiotic specific eukaryotic recombination gene. Proc Natl Acad Sci U S A 84:8035–8039PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Annu Rev Genet 10:53–134PubMedCrossRefGoogle Scholar
  5. Basak SL, Paria P (1980) Desynapsis and spontaneous trisomy in jute (Corchorus olitorius L.). Theor Appl Genet 56:253–256PubMedCrossRefGoogle Scholar
  6. Bass HW, Bordoli SJ, Foss EM (2003) The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomere-misplacement phenotypes during meiotic prophase. J Exp Bot 54:39–46PubMedCrossRefGoogle Scholar
  7. Beadle GW, McClintock B (1928) A genic disturbance of meiosis in Zea mays. Science 68:433PubMedCrossRefGoogle Scholar
  8. Bergner AD, Cartledge JL, Blakeslee AF (1934) Chromosome behavior due to a gene which prevents metaphase pairing in Datura. Cytologia 6:19–37CrossRefGoogle Scholar
  9. Bernardo Filho RA, Santos ACC, Souza FHD, Valls JFM, Pagliarini MS (2014) Complete asynapsis resulting in 2n pollen formation in Paspalum jesuiticum parody (Poaceae). Genet Mol Res 13(1):255–261PubMedCrossRefGoogle Scholar
  10. Bione NCP, Pagliarini MS, Almeida LA (2002) Anasynaptic mutation in soybean (Glycine max (L.) Merrill) associated with total absence of sister chromatids cohesiveness. Cytologia 67:177–183CrossRefGoogle Scholar
  11. Boldrini KR, Pagliarini MS, Valle CB (2006) Abnormal timing of cytokinesis in microsporogenesis of Brachiaria humidicola (Poaceae: Paniceae). J Genet 85:225–228Google Scholar
  12. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  13. Cai X, Xu SS (2007) Meiosis driven genome variation in plants. Curr Genomics 8:151–161PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesion protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007PubMedCrossRefGoogle Scholar
  15. Calisto V, Fuzinatto VA, Message HJ, Mendes-Bonato AB, Boldrini KR, Pagliarini MS, Do Valle CB (2008) Desynapsis and precocious cytokinesis in Brachiaria humidicola (Poaceae) compromise meiotic division. J Genet 87(1):27–31PubMedCrossRefGoogle Scholar
  16. Chaudhury AM, Lavithis M, Taylor PE, Craig S, Singh MB, Signer ER, Knox RB, Dennis ES (1994) Genetic control of male fertility in Arabidopsis thaliana: structural analysis of premeiotic developmental mutants. Sex Plant Reprod 7:17–28CrossRefGoogle Scholar
  17. Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Marquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mezard C, Grelon M (2005) AtREC8 and AtSCC are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632PubMedCrossRefGoogle Scholar
  18. Cohen J (1968) Sorting out chromosome errors. Science 2002(296):2164–2166. Wagenaar EB. Meiotic restitution and the origin of polyploidy. II. Prolonged duration of metaphase I as causal factor of restitution induction. Can J Genet Cytol 10:844–852Google Scholar
  19. Cohen J (2002) Sorting out chromosome errors. Science 296:2164–2166PubMedCrossRefGoogle Scholar
  20. Dawson J, Wilson ZA, Aarts MGM, Braithwaite AF, Briarty LG, Mulligan BJ (1993) Microspore and pollen development in six male-sterile mutants of Arabidopsis thaliana. Can J Bot 71:629–638CrossRefGoogle Scholar
  21. Dempsey E (1959) Analysis of crossing over in haploid genetics of asynaptic plants. Maize Genet Coop News Lett 33:54–55Google Scholar
  22. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398PubMedCrossRefGoogle Scholar
  23. Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2010) Meiotic aberrations during 2n pollen formation in Begonia. Heredity 104:215–223PubMedCrossRefGoogle Scholar
  24. Dyck PL, Rajhathy T (1965) A desynaptic mutant in Avena strigosa. Can J Genet Cytol 7:418–421CrossRefGoogle Scholar
  25. Enns H, Larter EN (1962) Linkage relations of ds: a gene governing chromosome behavior in barley and its effect on genetic recombination. Can J Genet Cytol 4:263–266CrossRefGoogle Scholar
  26. Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297Google Scholar
  27. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84PubMedCrossRefGoogle Scholar
  28. Giansanti MG, Farkas RM, Bonaccorsi S, Lindsley DL, Wakimoto BT, Fuller MT, Gatti M (2004) Genetic dissection of meiotic cytokinesis in Drosophila males. Mol Biol Cell 15:2509–2522PubMedPubMedCentralCrossRefGoogle Scholar
  29. Golubovskaya IN (1979) Genetic control of meiosis. Int Rev Cytol 58:247–290PubMedCrossRefGoogle Scholar
  30. Golubovskaya IN (1989) Meiosis in maize: mei genes and conception of genetic control of meiosis. In: Scandalios JG (ed) Advances in genetics, vol. 26. Academic Press, San Diego, pp 149–192CrossRefGoogle Scholar
  31. Golubovskaya IN, Mashnenkov AS (1976) Genetic control of meiosis. II. A desynaptic mutant in maize induced by N-Nitroso-N-Methylurea. Genetika 12(2):7–14Google Scholar
  32. Goodspeed TH, Avery P (1939) Trisomic and other types in Nicotiana sylvestris. Genetics 38:381–458CrossRefGoogle Scholar
  33. Gottschalk W (1987) Different intensity of the action of desynaptic genes on micro- and megasporogenesis. Cytologia 52:653–656CrossRefGoogle Scholar
  34. Gottschalk W, Baquar SR (1971) Desynapsis in pisum sativum induced through gene mutation. Can J Genet Cytol 13:138–143CrossRefGoogle Scholar
  35. Gottschalk W, Kaul MLH (1974) The genetic control of microsporogenesis in higher plants. Nucleus 17:133–166Google Scholar
  36. Gottschalk W, Kaul MLH (1980a) Asynapsis and desynapsis in flowering plants. I. Asynapsis. Nucleus 23:1–15Google Scholar
  37. Gottschalk W, Kaul MLH (1980b) Asynapsis and desynapsis in flowering plants. II. Desynapsis. Nucleus 23:97–120Google Scholar
  38. Gottschalk W, klein HD (1976) The influence of mutated genes in sporogenesis. A survey on genetic control of meiosis in Pisum sativum. Theor Appl Genet 48:23–34PubMedCrossRefGoogle Scholar
  39. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  40. Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 2001(20):589–600CrossRefGoogle Scholar
  41. Grishaeva TM, Bogdano YF (2000) Genetic control of meiosis in Drosophila. Russ J Gen 36:1089–1106Google Scholar
  42. Hadley HH, Starnes WJ (1964) Sterility in soybeans caused by asynapsis. Crop Sci 4:421–424CrossRefGoogle Scholar
  43. Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302PubMedCrossRefGoogle Scholar
  44. He C, Tirlapur U, Cresti M, Peja M, Crone DE, Mascarenhas JP (1996) An Arabidopsis mutant showing aberrations in male meiosis. Sex Plant Reprod 9:54–57CrossRefGoogle Scholar
  45. Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183PubMedCrossRefGoogle Scholar
  46. Iwanaga M, Peloquin S (1979) Synaptic mutant affecting only megasporogenesis in potatoes. J Hered 70:385–389Google Scholar
  47. Ji YE, Stelly DM, Donato MD, Goodman MM, Williams CG (1999) A candidate recombination modifier gene for Zea Mays L. Genetics 151:821–830PubMedPubMedCentralGoogle Scholar
  48. John B, Lewis KR (1965) The meiotic system. Protoplasmatologia Bd. VI, Fr. Springer, Wein/New YorkGoogle Scholar
  49. Jones GH (1974) Correlated components of chiasma variation and the control of chiasma distribution in rye. Heredity 32:375–387CrossRefGoogle Scholar
  50. Jongedijk E, Ramanna MS, Sawor Z, Hermsen JGT (1991) Formation of first division restitution (FDR) 2n megaspores through pseudohomotypic division in ds-1 (desynapsis) mutants of diploid potato: routine production of tetraploid progeny from 2xFDR x 2xFDR crosses. Theor Appl Genet 82:645–656PubMedCrossRefGoogle Scholar
  51. Katayama T (1964) Further review on the heritable asynapsis in plants. La Kromosomo 57–59:1934–1942Google Scholar
  52. Kato KK, Palmer RG (2003) Molecular mapping of the male-sterile, female-sterile mutant gene (st8) in soybean. J Hered 94:425–428PubMedCrossRefGoogle Scholar
  53. Kaul MLH, Murthy TGK (1985) Mutant genes affecting higher plant meiosis. Theor Appl Genet 70:449–466PubMedCrossRefGoogle Scholar
  54. Khawaja HII, Ellis JR (1987) Colchicine induced desynaptic mutations in Lathyrus odoratus L. and L. pretens L. Genome 29:859–866CrossRefGoogle Scholar
  55. Kim JS, Oginuma K, Tobe H (2009) Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy. J Plant Res 122:439–444PubMedCrossRefGoogle Scholar
  56. Kitada K, Omura T (1983) Genetic control of meiosis in rice Oryza sativa L. II. Cytogenetical analyses of desynaptic mutants. Jpn J Genet 58:567–577CrossRefGoogle Scholar
  57. Kitada K, Omura T (1984) Genetic control of meiosis in rice, Oryza sativa L. IV > Cytogenetical analysis of asynaptic mutants. Can J Genet Cytol 26:264–271CrossRefGoogle Scholar
  58. Koduru PRK, Rao MK (1981) Cytogenetics of synaptic mutants in higher plants. Theor Appl Genet 59:197–214PubMedGoogle Scholar
  59. Kumar G, Rai P (2006) Induced desynaptic male sterile lines in soybean. Cytologia 71:337–343CrossRefGoogle Scholar
  60. Kumar G, Sharma V (2001) Induced desynapsis in Cicer arietinum L. J Cytol Genet 2:123–127Google Scholar
  61. Kumar G, Singh V (2002) Desynaptic variation in barley. J Cytol Genet 3:127–131Google Scholar
  62. Kumar P, Singhal VK (2011) Chromosome number, male meiosis and pollen fertility in selected angiosperms of the cold deserts of Lahaul Spiti and adjoining areas (Himachal Pradesh, India). Plant Syst Evol 297:271–297CrossRefGoogle Scholar
  63. Kumar P, Singhal VK, Kaur D (2011) Impaired male meiosis due to irregular synapsis coupled with cytomixis in a new diploid cytotype of Dianthus angulatus (Caryophyllaceae) from Indian cold deserts. Folia Geobot 47:59–68CrossRefGoogle Scholar
  64. La Cour LP, Wells B (1970) Meiotic prophase in anthers of asynaptic wheat. A light and electron microscopical study. Chromosoma (Berl) 29:419–427CrossRefGoogle Scholar
  65. Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282PubMedCrossRefGoogle Scholar
  66. Li HW, Pao WK, Li CH (1945) Desynapsis in the common wheat. Am J Bot 32:92–101CrossRefGoogle Scholar
  67. Maguire MP, Paredes AM, Riess RW (1991) The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome 34:879–887PubMedCrossRefGoogle Scholar
  68. Maity S, Datta AK (2009) Spontaneous desynapsis in Corchorus fascicularis Lamk. (Family: Tiliaceae). Indian J Sci Technol 2:34–35Google Scholar
  69. Martini G, Bozzini A (1966) Radiation induced asynaptic mutations in durum wheat (Triticum durum Desf.). Chromosoma (Berl) 20:251–266CrossRefGoogle Scholar
  70. Mendiburu AO, Peloquin SJ (1971) High yielding tetraploids from 4x-2x and 2x-2x matings. Am Potato J 48:300–301Google Scholar
  71. Miller OL (1963) Cytological studies in asynaptic maize. Genetics 48:1445–1466PubMedPubMedCentralGoogle Scholar
  72. Moens PB (1969) Genetic and cytological effects of three desynaptic genes in the tomato. Can J Genet Cytol 11:857–869CrossRefGoogle Scholar
  73. Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signaling. Nat Rev Mol Cell Biol 3:731–741Google Scholar
  74. Nacry P, Mayer U, Jurgens G (2000) Genetic dissection of cytokinesis. Plant Mol Biol 43:719–733PubMedCrossRefGoogle Scholar
  75. Naseem S, Kumar G (2013) Induced desynaptic variation in poppy (Papaver somniferum L.). Crop Breed Appl Biotechnol 13:363–366CrossRefGoogle Scholar
  76. Nel PM (1979) Effect of synaptic factor on recombination in maize. J Hered 70:401–406Google Scholar
  77. Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The insertional mutation of rice PAIR2 gene, the ortholog of Arabidopsis ASY1, caused a defect in homologous chromosome pairing in meiosis. Mol Genet Genomics 271:121–129PubMedCrossRefGoogle Scholar
  78. Omara MK, Hayward MD (1978) Asynapsis in Lolium perenne. Chromosoma (Berl) 67:87–96CrossRefGoogle Scholar
  79. Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa. Ann Bot 79:449–453CrossRefGoogle Scholar
  80. Oselebe HO, Obi IU, Uguru MI (2010) Predicting hybrid performances from interploidy crosses in Musa species. Aust J Crop Sci 4:415–420Google Scholar
  81. Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789PubMedCrossRefGoogle Scholar
  82. Pagliarini MS (2000) Meiotic behavior of economically important plant species, the relationship between fertility and male sterility. Genet Mol Biol 23:997–1002CrossRefGoogle Scholar
  83. Pal BP, Ramanujam S (1940) Asynapsis in chilli (Capsicum annum L.). Curr Sci 9:126–128Google Scholar
  84. Palmer RG (1974a) A desynaptic mutant in the soybean. J Hered 65:280–286Google Scholar
  85. Palmer RG (1974b) Aneuploids in the soybean, Glycine max. Can J Genet Cytol 16:441–447CrossRefGoogle Scholar
  86. Palmer RG, Heer H (1976) Aneuploids from a desynaptic mutant in soybeans (Glycine max (L.) Merr.). Cytologia 41:417–427CrossRefGoogle Scholar
  87. Palmer RG, Horner HT (2000) Genetics and cytology of a genic malesterile, female-sterile mutant from a transposon-containing soybean population. J Hered 91:378–383PubMedCrossRefGoogle Scholar
  88. Palmer RG, Kaul MLH (1983) Genetics, cytology and linkage studies of a desynaptic soybean mutant. J Hered 74:260–264Google Scholar
  89. Pankratz DG, Forsburg SL (2005) Meiotic S-phase damage activates recombination without checkpoint arrest. Mol Biol Cell 16:1651–1660PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande W (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303:89–92PubMedCrossRefGoogle Scholar
  91. Peirson BN, Owen HA, Feldmann KA, Makaroff CA (1996) Characterization of three male-sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis. Sex Plant Reprod 9:1–16CrossRefGoogle Scholar
  92. Peirson BN, Bowling SE, Macaroff CA (1997) A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant. Plant J 11:659–669PubMedCrossRefGoogle Scholar
  93. Peloquin SJ (1982) Meiotic mutants in potato breeding. Stadler Genet Symp 14:99–109Google Scholar
  94. Prasad G, Tripathi DK (1986) Asynaptic and desynaptic mutants in barley. Cytologia 51:11–19CrossRefGoogle Scholar
  95. Prasad G, Prasad J (1983) Induced desynapsis in safflower. Indian J Genet 43:276–278Google Scholar
  96. Qu L, Vorsa N (1999) Desynapsis and spindle abnormalities leading to 2n pollen formation in Vaccinium darrowii. Genome 42:35–40CrossRefGoogle Scholar
  97. Ramage RT (1985) Cytogenetics. In: Rasmusson DC (ed) Barley, Agro Monograph 26. American society of Agronomy/Crop ScienceSociety of America/Soil Science Society of America, Madison, pp 127–154Google Scholar
  98. Ramanna MS (1983) First division restitution gametes through fertile desynaptic mutants of potato. Euphytica 32:337–350CrossRefGoogle Scholar
  99. Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement – a review. Euplytica 133:3–18CrossRefGoogle Scholar
  100. Rao KGR, Kumar OA (1983) Cytogenetics of a spontaneous desynaptic mutant in Chillies (Capsicum annum L). Cytologia 48:195–199CrossRefGoogle Scholar
  101. Rao SR, Kumar A (2003) Cytological investigations in a synaptic variant of Anogeissus sericea var. sericea Brandis (Combretaceae), an important hardwood tree of Rajasthan. Bot J Linn Soc 142:103–109CrossRefGoogle Scholar
  102. Reddi TVVS, Rao DRM (2000) Cytology of induced desynaptic mutant in rice. Cytologia 65:35–41CrossRefGoogle Scholar
  103. Rees H (1961) Genotypic control of chromosome form and behavior. Bot Rev 27:288–318CrossRefGoogle Scholar
  104. Rines HW, Johnson SS (1988) Synaptic mutants in hexaploid oats (Avena sativa L.). Genome 30:1–7CrossRefGoogle Scholar
  105. Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621PubMedCrossRefGoogle Scholar
  106. Ross JG, Sanders ME, Franzke CJ (1960) Asynapsis in sorghum. Hereditas 46:570–580CrossRefGoogle Scholar
  107. Schwarzacher T (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54:11–23PubMedCrossRefGoogle Scholar
  108. Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma Bd. 4:535–550Google Scholar
  109. Sears ER (1954) The aneuploids of common wheat, Research bulletin no. 572. University of Missouri, College of Agricultural Experiment Station, Columbia, pp 1–58Google Scholar
  110. Sethi GS, Gill KS, Ghai BS (1970) Cytogenetics of induced asynapsis in barley. Indian J Genet Plant Breed 30:604–607Google Scholar
  111. Shah SS (1964) Studies on a triploid, a tetrasomic triploid and a trisomic plant of Dactylis glomerata. Chromosoma 15:469–477CrossRefGoogle Scholar
  112. Sharma SK, Bisht MS, Pandit MK (2010) Synaptic mutation-driven male sterility in Panax sikkimensis Ban. (Araliaceae) from Eastern Himalaya, India. Plant Syst Evol 287:29–36CrossRefGoogle Scholar
  113. Sharma SK, Kumaria S, Tandon P, Rao SR (2011) Synaptic variation derived plausible cytogenetical basis of rarity and endangeredness of endemic Mantisia spathulata Schult. Nucleus 54:85–93CrossRefGoogle Scholar
  114. Silva N, Mendes-Bonato AB, Sales JGC, Pagliarini MS (2011) Meiotic behavior and pollen viability in Moringa oleifera (Moringaceae) cultivated in southern Brazil. Genet Mol Res 10:1728–1732PubMedCrossRefGoogle Scholar
  115. Simchen G, Stamberg J (1969) Fine and coarse controls of genetic recombination. Nature 222:329–332PubMedCrossRefGoogle Scholar
  116. Singh RJ (2002) Plant cytogenetics. CRC Press, LondonGoogle Scholar
  117. Singh RJ (2003) Genetic control of meiosis. In: Singh RJ (ed) Plant cytogenetics, 2nd edn. CRC Press NY, Washington DC, pp 73–91Google Scholar
  118. Singh S, Gupta PK (1981) Desynapsis in Zinnia haegena L. Cytologia 46:63–67CrossRefGoogle Scholar
  119. Singh RJ, Ikehashi H (1981) Monogenic male sterility in rice: induction, identification and inheritance. Crop Sci 21:286–289CrossRefGoogle Scholar
  120. Singhal VK, Kumar P (2010) Variable sized pollen grains due to impaired male meiosis in the cold desert plants of Northwest Himalayas (India). In: Kaiser BJ (ed) Pollen: structure, types and effects. Nova Science Publishers Inc, New York, pp 101–126Google Scholar
  121. Singhal VK, Kaur M, Himshikha KP, Gupta RC (2012) High pollen sterility and 2n pollen grains in an asynaptic 4x cytotype (2n = 48) of solanum nigrum L. Cytologia 77(3):333–342CrossRefGoogle Scholar
  122. Sinha SK, Mohapatra BK (1969) Compensatory chiasma formation in maize. Cytologia 34:523–527CrossRefGoogle Scholar
  123. Sjodin J (1970) Induced asynaptic mutants in Vicia faba L. Hereditas 66:215–232CrossRefGoogle Scholar
  124. Soost RK (1951) Comparative cytology and genetics of asynaptic mutants in Lycopersicon esculentum Mill. Genetics 36:410–434PubMedPubMedCentralGoogle Scholar
  125. Sosnikhina SP et al (1992) Meiotic mutants of rye Scale cereale L. I. Synaptic mutant ry-1. Theor Appl Genet 84:979–985PubMedGoogle Scholar
  126. Srivastava HM (1974) Radiation induced desynaptic mutant in barley. Cytologia 39:63–68CrossRefGoogle Scholar
  127. Stephens JC, Schertz KF (1965) Asynapsis and its inheritance in Sorghum vulgare Pers. Crop Sci 5:337–339CrossRefGoogle Scholar
  128. Stringam GR (1970) A cytogenetic analysis of three asynaptic mutants in Brassica compestris L. Can J Genet Cytol 12:743–749CrossRefGoogle Scholar
  129. Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SBC, Nasmyth K (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:1155–1168Google Scholar
  130. Tsubouchi H, Roeder GS (2003) The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell 5:915–925PubMedCrossRefGoogle Scholar
  131. Veronesi F, Mariani A, Bingham ET (1996) Unreduced gametes in diploid Medicago and their importance in alfalfa breeding. Theor Appl Genet 72:17–41Google Scholar
  132. Villeneuve AM, Hillers KJ (2001) Whence meiosis? Cell 106:647–650PubMedCrossRefGoogle Scholar
  133. Visser NC, Spies JJ, Venter HJT (1999) The presence of synaptic and chromosome disjunction mutants in Cenchrus ciliaris (Poaceae: Paniceae). Bothalia 29:327–334CrossRefGoogle Scholar
  134. Vorsa N, Ortiz R (1992) Cytology of 2n pollen formation in a blueberry aneuploid (2n = 4x + 9 = 57). J Hered 83:346–349Google Scholar
  135. Watanabe Y (2003) Monopolar attachment by Polo. Nat Cell Biol 5:379–382PubMedCrossRefGoogle Scholar
  136. Watanabe Y (2004) Modifying sister chromatid cohesion for meiosis. J Cell Sci 117:4017–4023PubMedCrossRefGoogle Scholar
  137. Watanabe Y, Hauf S (2004) Kinetochore orientation in mitosis and meiosis. Cell 119:317–327PubMedCrossRefGoogle Scholar
  138. Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464PubMedCrossRefGoogle Scholar
  139. Watanabe Y, Yokobayashi S (2005) The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123:803–817PubMedCrossRefGoogle Scholar
  140. Weaver JB (1971) An asynaptic character in cotton inherited as a double recessive. Crop Sci 11:927–928CrossRefGoogle Scholar
  141. Xu SJ, Singh RJ, Kollipora KP, Hymowitz T (2000) Primary trisomics in soybean: origin, identification, breeding behavior, and use in gene mapping. Crop Sci 40:1543–1551CrossRefGoogle Scholar
  142. Xue Z, Liu P, Liu M (2011) Cytological mechanism of 2n pollen formation in Chinese jujube (Ziziphus jujuba Mill. Linglingzao). Euphytica 182:231–238CrossRefGoogle Scholar
  143. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754PubMedCrossRefGoogle Scholar
  144. Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750PubMedCrossRefGoogle Scholar
  145. Zou JJ, Singh RJ, Lee J, Xu SS, Hymowitz T (2006) SSR markers exhibit trisomic segregation distortion in soybean [Glycine max (L.) Merr.]. Crop Sci 46:1456–1461CrossRefGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia
  2. 2.Department of EducationGovernment of Jammu and KashmirSrinagarIndia

Personalised recommendations