Advertisement

An Example of Physical Interest

  • Debashish Goswami
  • Jyotishman Bhowmick
Chapter
Part of the Infosys Science Foundation Series book series (ISFS)

Abstract

This chapter is devoted to the quantum isometry group of the finite geometry of the Connes-Chamseddine picture of the Standard Model. We begin with some generalities on real \(C^*\) algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.

Keywords

Dirac Operator Quantum Group Spectral Action Compact Quantum Group Spectral Triple 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Connes, A., Lott, J.: Particle models and noncommutative geometry, Recent advances in field theory (Annecy- le- Vieux, 1990). Nuclear Phys. B. Proc. Suppl 18B(1990), 29–47 (1991)CrossRefGoogle Scholar
  3. 3.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys 182, 155–176 (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unification of gravity and the Standard Model. Phys. Rev. Lett. 77, 4868 (1996)CrossRefMATHGoogle Scholar
  5. 5.
    Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Chamseddine, A.H., Connes, A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504, 19 (2006)Google Scholar
  7. 7.
    Chamseddine, A.H., Connes, A.: Inner fluctuations of the spectral action. J. Geom. Phys 57(1), 1–21 (2006)CrossRefMATHGoogle Scholar
  8. 8.
    Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys 11(6), 991–1089 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. J. High. Energ. Phys. 11, 081 (2006)CrossRefGoogle Scholar
  10. 10.
    Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58(1), 38–47 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Chamseddine, A.H., Connes, A.: Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I. Fortschr. Phys. 58(6), 553–600 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)CrossRefGoogle Scholar
  13. 13.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, 55 American Mathematical Society, Providence. RI, Hindustan Book Agency, New Delhi (2008)Google Scholar
  14. 14.
    Connes, A.: On the foundation of noncommutative geometry. The Unity of Mathematics. Progress in Mathematics, vol. 224, pp. 173–204. Birkhauser, Boston (2006)Google Scholar
  15. 15.
    Barrett, J.W.: A Lorentzian version of the noncommutative geometry of the standard model of particle physics. J. Math. Phys. 48, 012303 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Chamseddine, A.H., Connes, A.: Resilience of the spectral standard model. JHEP 1209, 104 (2012)CrossRefGoogle Scholar
  17. 17.
    Devastato, A., Lizzi, F., Martinetti, P.: Grand Symmetry. Spectral Action, and the Higgs mass. JHEP 1, 042 (2014)Google Scholar
  18. 18.
    van Suijlekom, W.D.: Noncommutative Geometry and Paricle Physics. Springer, Mathematical Physics Studies (2015)Google Scholar
  19. 19.
    van den Broek, T., van Suijlekom, W.D.: Supersymmetric QCD from noncommutative geometry. Phys. Lett. B 699(1–2), 119–122 (2011)CrossRefMATHGoogle Scholar
  20. 20.
    Boeijink, J., van Suijlekom, W.D.: The noncommutative geometry of Yang Mills fields. J. Geom. Phys. 61, 1122–1134 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    van den Dungen, K., van Suijlekom, W.D.: Electrodynamics from noncommutative geometry. J. Noncommut. Geom. 7, 433–456 (2013)CrossRefMATHGoogle Scholar
  22. 22.
    van den Broek, T., van Suijlekom, W.D.: Going beyond the standard model with noncommutative geometry. J. High Energy Phys. 1(3), 12 (2013)MATHGoogle Scholar
  23. 23.
    Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Inner fluctuations in noncommutative geometry without the first order condition. J. Geom. Phys. 73, 222–234 (2013)CrossRefMATHGoogle Scholar
  24. 24.
    Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. J. High. Energ. Phys. 132 (2013)Google Scholar
  25. 25.
    Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Grand unification in the spectral Pati-Salam model. J. High. Energ. Phys. 11, 011 (2015)CrossRefGoogle Scholar
  26. 26.
    Beenakker, W., van den Broek, T., van Suijlekom, W.D.: Supersymmetry and Noncommutative Geometry. Springer Brief in Mathematical Physics, vol. 9. Springer (2016)Google Scholar
  27. 27.
    van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative space time. Rev. Math. Phys. 24(9), 1230004 (2012)CrossRefMATHGoogle Scholar
  28. 28.
    Connes, A.: Noncommutative differential geometry and the structure of space-time. In: Huggett, S.A., et al. (eds.) Proceedings of the Symposium on Geometry, pp. 49–80. Oxford Univ. Press, Oxford, UK (1998)Google Scholar
  29. 29.
    Kastler, D.: Regular and adjoint representation of \(SL_q(2)\) at third root of unit. CPT internal report (1995)Google Scholar
  30. 30.
    Coquereaux, R.: On the finite dimensional quantum group \(M_3\oplus (M_{2|1}(\Lambda ^2))_0\). Lett. Math. Phys. 42, 309–328 (1997)CrossRefMATHGoogle Scholar
  31. 31.
    Dabrowski, L., Nesti, F., Siniscalco, P.: A finite quantum symmetry of \(M(3,\mathbb{C}),\) Int. J. Mod. Phys. A 13, 4147–4162 (1998)CrossRefMATHGoogle Scholar
  32. 32.
    Bhowmick, J., D’Andrea, F., Dabrowski, L.: Quantum isometries of the finite noncommutative geometry of the standard model. Commun. Math. Phys. 307, 101–131 (2011)CrossRefMATHGoogle Scholar
  33. 33.
    Bhowmick, J., D’Andrea, F., Das, B., Dabrowski, L.: Quantum gauge symmetries in noncommutative geometry. J. Noncommutative Geom. 8(2), 433–471 (2014)CrossRefMATHGoogle Scholar
  34. 34.
    Goswami, D.: Quantum isometry group for spectral triples with real structure. SIGMA 6, 007 (2010)MATHGoogle Scholar
  35. 35.
    Banica, T., Vergnioux, R.: Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier (Grenoble) 60(6), 2137–2164 (2010)CrossRefMATHGoogle Scholar
  36. 36.
    Goodearl, K.R.: Notes on real and complex \( C^* \) algebras. Shiva Mathematical Series, Book 5, Birkhauser, Boston (1980)Google Scholar
  37. 37.
    Fukuda, Y., et al.: (Super-Kamiokande Collaboration), Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)CrossRefGoogle Scholar
  38. 38.
    Ahmad, Q.R., et al.: (SNO Collaboration), Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002)CrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd 2016

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations