Deformation of Spectral Triples and Their Quantum Isometry Groups

  • Debashish Goswami
  • Jyotishman Bhowmick
Part of the Infosys Science Foundation Series book series (ISFS)


This chapter deals with \( \mathrm{QISO}^{\mathcal{L}} \) and \( \mathrm{QISO}^{+}_R \) of a cocycle twisted noncommutative manifold. We first discuss the cocycle deformation of compact quantum groups, von Neumann algebras and spectral triples, followed by the proof of the fact that \( \mathrm{QISO}^{+}_{R} \) and \( \mathrm{QISO}^{\mathcal{L}} \) of a cocycle twist of a (noncommutative) manifold is a cocycle twist of the \( \mathrm{QISO}^{+}_R \) and \( \mathrm{QISO}^{\mathcal{L}} \) (respectively) of the original (undeformed) manifold.


Quantum Group Compact Quantum Group Spectral Triple Isospectral Deformation Quantum Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banica, T., Bichon, J., Curran, S.: Quantum automorphisms of twisted group algebras and free hypergeometric laws. Proc. Am. Math. Soc. 139(11), 3961–3971 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Goswami, D., Joardar S.: Quantum isometry groups of non commutative manifolds obtained by deformation using unitary 2-cocycle. SIGMA 10, 076, 18 (2014)Google Scholar
  3. 3.
    De Sadeleer, L.: Deformations of spectral triples and their quantum isometry groups via monoidal equivalences. arXiv:1603.02931
  4. 4.
    Neshveyev, S., Tuset, L.: Deformation of C*-algebras by cocycles on locally compact quantum groups. Adv. Math. 254, 454–496 (2014)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press (1995)Google Scholar
  6. 6.
    Bichon, J., De Rijdt, A., Vaes, S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bichon, J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bhowmick, J., Goswami, D.: Quantum isometry groups: examples and computations. Comm. Math. Phys. 285(2), 421–444 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Rieffel, M.A.: Deformation quantization for actions of \({R}^{d}\). Mem. Am. Math. Soc. 106(506) (1993)Google Scholar
  11. 11.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230(3), 539–579 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Wang, S.: Deformation of compact quantum groups via Rieffel’s quantization. Commun. Math. Phys. 178, 747–764 (1996)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Wang, S.: Rieffel type discrete deformation of finite quantum groups. Commun. Math. Phys. 202, 291–307 (1999)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Rieffel, M.A.: Compact quantum groups associated with toral subgroups. Contemp. Math. 145, 465–491 (1992)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Yamashita, M.: Connes-Landi deformation of spectral triples. 94(3), 263–291 (2010)Google Scholar
  17. 17.
    Yamashita, M.: Deformation of algebras associated to group cocycles. arXiv:1107.2512
  18. 18.
    Bhowmick, J., Neshveyev, S., Sangha, A.S.: Deformation of operator algebras by Borel cocycles. J. Funct. Anal. 265, 983–1001 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Hajac, P., Masuda, T.: Quantum double-torus. Comptes Rendus Acad. Sci. Paris Ser. I Math. 327(6), 553–558 (1998)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd 2016

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations