Skip to main content

Deformation of Spectral Triples and Their Quantum Isometry Groups

  • Chapter
  • First Online:
Quantum Isometry Groups

Part of the book series: Infosys Science Foundation Series ((ISFM))

  • 703 Accesses

Abstract

This chapter deals with \( \mathrm{QISO}^{\mathcal{L}} \) and \( \mathrm{QISO}^{+}_R \) of a cocycle twisted noncommutative manifold. We first discuss the cocycle deformation of compact quantum groups, von Neumann algebras and spectral triples, followed by the proof of the fact that \( \mathrm{QISO}^{+}_{R} \) and \( \mathrm{QISO}^{\mathcal{L}} \) of a cocycle twist of a (noncommutative) manifold is a cocycle twist of the \( \mathrm{QISO}^{+}_R \) and \( \mathrm{QISO}^{\mathcal{L}} \) (respectively) of the original (undeformed) manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banica, T., Bichon, J., Curran, S.: Quantum automorphisms of twisted group algebras and free hypergeometric laws. Proc. Am. Math. Soc. 139(11), 3961–3971 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Goswami, D., Joardar S.: Quantum isometry groups of non commutative manifolds obtained by deformation using unitary 2-cocycle. SIGMA 10, 076, 18 (2014)

    Google Scholar 

  3. De Sadeleer, L.: Deformations of spectral triples and their quantum isometry groups via monoidal equivalences. arXiv:1603.02931

  4. Neshveyev, S., Tuset, L.: Deformation of C*-algebras by cocycles on locally compact quantum groups. Adv. Math. 254, 454–496 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press (1995)

    Google Scholar 

  6. Bichon, J., De Rijdt, A., Vaes, S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bichon, J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhowmick, J., Goswami, D.: Quantum isometry groups: examples and computations. Comm. Math. Phys. 285(2), 421–444 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rieffel, M.A.: Deformation quantization for actions of \({R}^{d}\). Mem. Am. Math. Soc. 106(506) (1993)

    Google Scholar 

  11. Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230(3), 539–579 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, S.: Deformation of compact quantum groups via Rieffel’s quantization. Commun. Math. Phys. 178, 747–764 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, S.: Rieffel type discrete deformation of finite quantum groups. Commun. Math. Phys. 202, 291–307 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rieffel, M.A.: Compact quantum groups associated with toral subgroups. Contemp. Math. 145, 465–491 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yamashita, M.: Connes-Landi deformation of spectral triples. 94(3), 263–291 (2010)

    Google Scholar 

  17. Yamashita, M.: Deformation of algebras associated to group cocycles. arXiv:1107.2512

  18. Bhowmick, J., Neshveyev, S., Sangha, A.S.: Deformation of operator algebras by Borel cocycles. J. Funct. Anal. 265, 983–1001 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hajac, P., Masuda, T.: Quantum double-torus. Comptes Rendus Acad. Sci. Paris Ser. I Math. 327(6), 553–558 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd

About this chapter

Cite this chapter

Goswami, D., Bhowmick, J. (2016). Deformation of Spectral Triples and Their Quantum Isometry Groups. In: Quantum Isometry Groups. Infosys Science Foundation Series(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3667-2_7

Download citation

Publish with us

Policies and ethics