Skip to main content

Quantum Isometry Groups of Discrete Quantum Spaces

  • Chapter
  • First Online:
Quantum Isometry Groups

Part of the book series: Infosys Science Foundation Series ((ISFM))

  • 702 Accesses

Abstract

We show that the definitions of quantum symmetry groups for finite metric spaces and graphs given by Banica and Bichon can be viewed as quantum isometry groups in our sense. Next, we prove that the quantum group of orientation preserving isometries of a spectral triple on some approximately finite dimensional \( C^* \) algebras arise as the inductive limit of the quantum group of orientation preserving isometries of suitable spectral triples on the constituent finite dimensional algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bichon, J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banica, T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banica, T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banica, T., Bichon, J.: Quantum automorphism groups of vertex-transitive graphs of order \(\le 11\). J. Algebraic Comb. 26, 83–105 (2007)

    Article  MATH  Google Scholar 

  6. Banica, T., Bichon, J., Chenevier, G.: Graphs having no quantum symmetry. Ann. Inst. Fourier 57, 955–971 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banica, T., Bichon, J.: Quantum groups acting on 4 points. J. Reine Angew. Math. 626, 75–114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. noncommutative harmonic analysis with applications to probability. Polish Acad. Sci. Inst. Math. 78, 13–34, Banach Center Publications, Warsaw (2007)

    Google Scholar 

  9. Banica, T., Moroianu, S.: On the structure of quantum permutation groups. Proc. Am. Math. Soc. 135(1), 21–29 (2007) (electronic)

    Google Scholar 

  10. Bichon, J.: Algebraic quantum permutation groups. Asian-Eur. J. Math. 1(1), 1–13 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Christensen, E., Ivan, C.: Spectral triples for AF \(C^*\)-algebras and metrics on the Cantor set. J. Oper. Theory 56(1), 17–46 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Christensen, E., Ivan, C.: Sums of two dimensional spectral triples. Math. Scand. 100(1), 35–60 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Skalski, A., Soltan, P.M.: Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17(2), 1450012 (27 pages) (2014)

    Google Scholar 

  14. Rieffel, M.A.: Metrics on state spaces. Doc. Math. 4, 559–600 (1999)

    MATH  MathSciNet  Google Scholar 

  15. Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Am. Math. Soc. 363, 901–921 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Banica, T., Skalski, A.: Quantum symmetry groups Of \(C^*\)-algebras equipped with orthogonal filtrations. Proc. Lond. Math. Soc. 3(5), 980–1004, 106 (2013)

    Google Scholar 

  17. Davidson, K.R.: \( C^* \) Algebras by Examples. Hindustan Book Agency (1996)

    Google Scholar 

  18. Connes, A.: Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Syst. 9(2), 207–220 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd

About this chapter

Cite this chapter

Goswami, D., Bhowmick, J. (2016). Quantum Isometry Groups of Discrete Quantum Spaces. In: Quantum Isometry Groups. Infosys Science Foundation Series(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3667-2_5

Download citation

Publish with us

Policies and ethics