Skip to main content

Classical and Noncommutative Geometry

  • Chapter
  • First Online:
  • 720 Accesses

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

We discuss classical Riemannian geometry and its noncommutative geometric counterparts. At first the definition and properties of the Hodge Laplacian and the Dirac operator are given. We also derive the characterizations of isometries (resp. orientation preserving isometries) in terms of the Laplacian (resp. Dirac operator). This is followed by discussion on noncommutative manifolds given by spectral triples, including the definitions of noncommutative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, J.M.: Riemannian Manifolds, An Introduction to Curvature, Graduate Texts in Mathematics, vol. 176. Springer (1997)

    Google Scholar 

  2. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Donnelly, H.: Eigenfunctions of laplacians on compact riemannian manifolds. Assian J. Math. 10(1), 115–126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  5. Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Comm. Math. Phys. 230(3), 539–579 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Maes, A., Van Daele, A.: Notes on compact quantum groups. Nieuw Arch. Wisk. 4, 16(1–2), 73–112 (1998)

    Google Scholar 

  7. Soltan, P.M.: Quantum families of maps and quantum semigroups on finite quantum spaces, preprint. J. Geom. Phys. 59(3), 354–368 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Woronowicz, S.L.: Pseudogroups, pseudospaces and Pontryagin duality. In: Proceedings of the International Conference on Mathematical Physics. Lecture Notes in Physics, vol. 116, pp. 407–412. Lausanne (1979)

    Google Scholar 

  9. Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics 25. American Mathematical Society, Providence (2000)

    Google Scholar 

  10. Park, E.: Isometries of noncommutative metric spaces. Proc. Am. Math. Soc. 123(1), 97–105 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Srivastava, S.M.: A Course on Borel Sets. Graduate Texts in Mathematics, vol. 180. Springer, New York (1998)

    Google Scholar 

  12. Varilly, J.C.: An Introduction to Noncommutative Geometry. EMS Series of Lectures in Mathematics (2006)

    Google Scholar 

  13. Connes, A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7(1), 1–82 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Connes, A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  15. Landi, G.: An Introduction to Noncommutative Spaces and their Geometries. Lecture notes in Physics Monographs, vol. 51. Springer, Berlin (1997)

    Google Scholar 

  16. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, vol. 55. American Mathematical Society, Providence, Hindustan Book Agency, New Delhi (2008)

    Google Scholar 

  17. Blackadar, B.: K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  18. Khalkhali, M.: Basic Noncommutative Geometry. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2009)

    Google Scholar 

  19. Higson, N., Roe, J.: Analytic K-homology. Oxford Science Publications, Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  20. Carey, A.L., Phillips, J., Rennie, A.: Semifinite spectral triples associated with graph \(C^*\)-algebras. Traces in number theory, geometry and quantum fields, pp. 35–56, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)

    Google Scholar 

  21. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The Hochschild class of the Chern character for semifinite spectral triples. J. Funct. Anal. 213(1), 111–153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dabrowski, L.: Geometry of quantum spheres. J. Geom. Phys. 56(1), 86–107 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podles’ sphere. C.R. Math. Acad. Sci. Paris 340(11), 819–822 (2005)

    Google Scholar 

  24. Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum \(SU(2)\) group. K. Theory 28, 107–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podles’ quantum spheres. J. Noncomm. Geom. 1, 213–239 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric quantum theory and non-commutative geometry. Comm. Math. Phys. 203(1), 119–184 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dabrowski, L., Landi, G., Sitarz, A., van Suijlekom, W., Varilly, J.C.: The Dirac operator on \({\rm SU}_q(2)\). Commun. Math. Phys. 259(3), 729–759 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. D’Andrea, F., Dabrowski, L., Landi, G.: The noncommutative geometry of the quantum projective plane. Rev. Math. Phys. 20(8), 979–100 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Goswami, D.: Some Noncommutative Geometric Aspects of \(SU_{q}(2)\). arXiv:0108003v4

  32. Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for \({\rm SU}_q(2)\). J. Inst. Math. Jussieu 3(1), 17–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Goswami, D.: Twisted entire cyclic cohomology, JLO cocycles and equivariant spectral triples. Rev. Math. Phys. 16(5), 583–602 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Woronowicz, S.L.: Compact quantum groups, pp. 845–884. In: Connes, A., et al. (eds.): Syme’tries quantiques (Quantum Symmetries) (Les Houches). Elsevier, Amsterdam (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd

About this chapter

Cite this chapter

Goswami, D., Bhowmick, J. (2016). Classical and Noncommutative Geometry. In: Quantum Isometry Groups. Infosys Science Foundation Series(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3667-2_2

Download citation

Publish with us

Policies and ethics