Classical and Noncommutative Geometry

  • Debashish Goswami
  • Jyotishman Bhowmick
Part of the Infosys Science Foundation Series book series (ISFS)


We discuss classical Riemannian geometry and its noncommutative geometric counterparts. At first the definition and properties of the Hodge Laplacian and the Dirac operator are given. We also derive the characterizations of isometries (resp. orientation preserving isometries) in terms of the Laplacian (resp. Dirac operator). This is followed by discussion on noncommutative manifolds given by spectral triples, including the definitions of noncommutative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.


Dirac Operator Quantum Group Noncommutative Geometry Compact Riemannian Manifold Spin Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee, J.M.: Riemannian Manifolds, An Introduction to Curvature, Graduate Texts in Mathematics, vol. 176. Springer (1997)Google Scholar
  2. 2.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Donnelly, H.: Eigenfunctions of laplacians on compact riemannian manifolds. Assian J. Math. 10(1), 115–126 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)MATHGoogle Scholar
  5. 5.
    Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Comm. Math. Phys. 230(3), 539–579 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Maes, A., Van Daele, A.: Notes on compact quantum groups. Nieuw Arch. Wisk. 4, 16(1–2), 73–112 (1998)Google Scholar
  7. 7.
    Soltan, P.M.: Quantum families of maps and quantum semigroups on finite quantum spaces, preprint. J. Geom. Phys. 59(3), 354–368 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Woronowicz, S.L.: Pseudogroups, pseudospaces and Pontryagin duality. In: Proceedings of the International Conference on Mathematical Physics. Lecture Notes in Physics, vol. 116, pp. 407–412. Lausanne (1979)Google Scholar
  9. 9.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics 25. American Mathematical Society, Providence (2000)Google Scholar
  10. 10.
    Park, E.: Isometries of noncommutative metric spaces. Proc. Am. Math. Soc. 123(1), 97–105 (1995)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Srivastava, S.M.: A Course on Borel Sets. Graduate Texts in Mathematics, vol. 180. Springer, New York (1998)Google Scholar
  12. 12.
    Varilly, J.C.: An Introduction to Noncommutative Geometry. EMS Series of Lectures in Mathematics (2006)Google Scholar
  13. 13.
    Connes, A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7(1), 1–82 (2013)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Connes, A.: Noncommutative Geometry. Academic Press, London (1994)MATHGoogle Scholar
  15. 15.
    Landi, G.: An Introduction to Noncommutative Spaces and their Geometries. Lecture notes in Physics Monographs, vol. 51. Springer, Berlin (1997)Google Scholar
  16. 16.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, vol. 55. American Mathematical Society, Providence, Hindustan Book Agency, New Delhi (2008)Google Scholar
  17. 17.
    Blackadar, B.: K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1998)Google Scholar
  18. 18.
    Khalkhali, M.: Basic Noncommutative Geometry. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2009)Google Scholar
  19. 19.
    Higson, N., Roe, J.: Analytic K-homology. Oxford Science Publications, Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)Google Scholar
  20. 20.
    Carey, A.L., Phillips, J., Rennie, A.: Semifinite spectral triples associated with graph \(C^*\)-algebras. Traces in number theory, geometry and quantum fields, pp. 35–56, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)Google Scholar
  21. 21.
    Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The Hochschild class of the Chern character for semifinite spectral triples. J. Funct. Anal. 213(1), 111–153 (2004)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Dabrowski, L.: Geometry of quantum spheres. J. Geom. Phys. 56(1), 86–107 (2006)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podles’ sphere. C.R. Math. Acad. Sci. Paris 340(11), 819–822 (2005)Google Scholar
  24. 24.
    Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum \(SU(2)\) group. K. Theory 28, 107–126 (2003)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podles’ quantum spheres. J. Noncomm. Geom. 1, 213–239 (2007)MATHMathSciNetGoogle Scholar
  27. 27.
    Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric quantum theory and non-commutative geometry. Comm. Math. Phys. 203(1), 119–184 (1999)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Dabrowski, L., Landi, G., Sitarz, A., van Suijlekom, W., Varilly, J.C.: The Dirac operator on \({\rm SU}_q(2)\). Commun. Math. Phys. 259(3), 729–759 (2005)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    D’Andrea, F., Dabrowski, L., Landi, G.: The noncommutative geometry of the quantum projective plane. Rev. Math. Phys. 20(8), 979–100 (2008)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Goswami, D.: Some Noncommutative Geometric Aspects of \(SU_{q}(2)\). arXiv:0108003v4
  32. 32.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for \({\rm SU}_q(2)\). J. Inst. Math. Jussieu 3(1), 17–68 (2004)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Goswami, D.: Twisted entire cyclic cohomology, JLO cocycles and equivariant spectral triples. Rev. Math. Phys. 16(5), 583–602 (2004)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Woronowicz, S.L.: Compact quantum groups, pp. 845–884. In: Connes, A., et al. (eds.): Syme’tries quantiques (Quantum Symmetries) (Les Houches). Elsevier, Amsterdam (1995)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd 2016

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations