Advertisement

More Examples and Open Questions

  • Debashish Goswami
  • Jyotishman Bhowmick
Chapter
Part of the Infosys Science Foundation Series book series (ISFS)

Abstract

We briefly discuss quantum isometry groups of few more interesting examples, including the free and half-liberated spheres, examples due to Raum and Weber as well as some Drinfeld-Jimbo quantum groups. We also give the outlines of other approaches to quantum isometry groups, such as the framework of orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of compact metric spaces due to Banica, Goswami, Sabbe and Quaegebeur. We mention several open questions in this context.

Keywords

Dirac Operator Quantum Group Compact Quantum Group Hilbert Module Quantum Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vaksman, L.L., Soibelman, Y.S.: Algebra of functions on the quantum group \(SU ( n + 1 )\), and odd-dimensional quantum spheres, (Russian), Algebra i Analiz 2(5), 101–120 (1990); translation in Leningrad Math. J. 2(5), 1023–1042 (1991)Google Scholar
  2. 2.
    Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials. Trans. Am. Math. Soc. 350(8), 3269–3296 (1998)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Klimyk, A., Schmudgen, K.: Quantum Groups and Their Representations. Springer, New York (1998)MATHGoogle Scholar
  4. 4.
    Banica, T., Speicher, R.: Liberation of orthogonal Lie groups. Adv. Math. 222(4), 1461–1501 (2009)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Banica, T., Goswami, D.: Quantum isometries and noncommutative spheres. Comm. Math. Phys. 298, 343–356 (2010)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Banica, T.: Liberations and twists of real and complex spheres. J. Geom. Phys. 96, 1–25 (2015)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Banica, T., Meszaros, S.: Uniqueness results for noncommutative spheres and projective spaces. Illinois J. Math. 59(1), 219–233 (2015)MATHMathSciNetGoogle Scholar
  8. 8.
    Speicher, R., Weber, M.: Quantum groups with partial commutation relations. arXiv:1603.09192
  9. 9.
    Banica, T.: Liberation theory for noncommutative homogeneous spaces. arXiv:1505.07755
  10. 10.
    Banica, T.: Quantum isometries, noncommutative spheres, and related integrals. arXiv:1601.02159
  11. 11.
    Banica, T.: Quantum isometries of noncommutative polygonal spheres. arXiv:1501.05229
  12. 12.
    Banica, T.: Half liberated manifolds, and their quantum isometries. arXiv:1505.00646
  13. 13.
    Banica, T.: A duality principle for noncommutative cubes and spheres. arXiv:1502.05315
  14. 14.
    Banica, T., Curran, S., Speicher, R.: Classification results for easy quantum groups. Pac. J. Math. 247(1), 1–26 (2010)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Raum, S., Weber, M.: The full classification of orthogonal easy quantum groups. Comm. Math. Phys. 341(3), 751–779 (2016)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Weber, M.: On the classification of easy quantum groups. Adv. Math. 245, 500–533 (2013)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Raum, S.: Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications. Proc. Am. Math. Soc. 140(9), 3207–3218 (2012)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Raum, S., Weber, M.: A Connection between Easy Quantum Groups, Varieties of Groups and Reflection Groups. arXiv:1212.4742
  19. 19.
    Banica, T., Skalski, A.: Quantum Symmetry Groups Of \(C^*\)-algebras equipped with orthogonal filtrations. Proc. Lon. Math. Soc. 3, 106 (2013) (no. 5, 980–1004)Google Scholar
  20. 20.
    Christensen, E., Ivan, C.: Spectral triples for AF \(C^*\)-algebras and metrics on the Cantor set. J. Operator Theory 56(1), 17–46 (2006)MATHMathSciNetGoogle Scholar
  21. 21.
    Skalski, A., Soltan, P.M.: Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17 (2014), no. 2, 1450012 (27 pages)Google Scholar
  22. 22.
    de Chanvalon, M.T.: Quantum symmetry groups of Hilbert modules equipped with orthogonal filtrations. J. Funct. Anal. 266(5), 3208–3235 (2014)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Goswami, D.: Quantum group of isometries in classical and non commutative geometry. Comm. Math. Phys. 285(1), 141–160 (2009)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. In: Graduate Texts in Mathematics, no. 9. Springer (1972)Google Scholar
  26. 26.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)MATHGoogle Scholar
  27. 27.
    Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press (1994)Google Scholar
  28. 28.
    Drinfeld, V.G.: Quantum Groups, Proceedings of the International Congress of Mathematicians. Berkeley (1986)Google Scholar
  29. 29.
    Drinfeld, V.G.: Quasi-Hopf algebras. Leningrad Math. J. 1, 1419–1457 (1990)Google Scholar
  30. 30.
    Jimbo, M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 10, 63–69 (1985)Google Scholar
  31. 31.
    Jimbo, M.: A q-difference analogue of \( U(g) \) and the Yang-Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Rosso, M.: Algebres enveloppantes quantiqees, groupes quantiques compacts de matrices et calcul diffe’rentiel non commutatif. Duke Math. J. 61, 11–40 (1990)MATHCrossRefGoogle Scholar
  33. 33.
    Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum \(SU(2)\) group. K. Theory 28, 107–126 (2003)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Dabrowski, L., Landi, G., Sitarz, A., van Suijlekom, W.: Varilly, Joseph C.: The Dirac operator on \({\rm SU}_q(2)\). Comm. Math. Phys. 259(3), 729–759 (2005)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Bhowmick, J., Goswami, D.: Quantum group of orientation preserving Riemannian isometries. J. Funct. Anal. 257(8), 2530–2572 (2009)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Krahmer, U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67(1), 49–59 (2004)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Krahmer, U., Tucker-Simmons, M.: On the Dolbeault-Dirac operator of quantized symmetric spaces. Trans. Lond. Math. Soc. 2(1), 33–56 (2015)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Goswami, D., Mandal, A.: In preparationGoogle Scholar
  39. 39.
    Huang, H.: Invariant subsets under compact quantum group actions. J. Noncommut. Geom. 10(2), 447–469 (2016)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Goswami, D.: Existence and examples of quantum isometry groups for a class of compact metric spaces. Adv. Math. 280, 340–359 (2015)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Chirvasitu, A.L.: On quantum symmetries of compact metric spaces. J. Geom. Phys. 94, 141–157 (2015)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Deza, M., Maehera, H.: Metric transformations and Euclidean embeddings. Trans. A.M.S. 317(2), 261–271 (1990)Google Scholar
  43. 43.
    Huang, H.: Faithful compact quantum group actions on connected compact metrizable spaces. J. Geom. Phys. 70, 232–236 (2013)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Etingof, P., Walton, C.: Semisimple Hopf actions on commutative domains. Adv. Math. 251, 47–61 (2014)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Chirvasitu, A.L.: Quantum rigidity of negatively curved manifolds. Comm. Math. Phys. 344(1), 193–221 (2016)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Sabbe, M., Quaegebeur, J.: Isometric coactions of compact quantum groups on compact quantum metric spaces. Proc. Indian Acad. Sci. Math. Sci. 122(3), 351–373 (2012)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Rieffel, M.A.: Compact quantum metric spaces, Operator algebras, quantization, and noncommutative geometry, pp. 315–330, Contemporary Mathematics, vol. 365, American Mathematical Society, Providence, RI (2004)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd 2016

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations