Part of the Infosys Science Foundation Series book series (ISFS)


In this chapter, we discuss the basic concepts and results needed in the later chapters of the book. Beginning with a glimpse of operator algebras and Hilbert modules, free product and tensor products of \( C^* \) algebras and some examples, we proceed to the generalities on quantum groups including the basics of Hopf algebras and compact quantum groups as well as some concrete examples such as \(U_{\mu } (2), SU_{\mu } (2), \mathcal{U}_{\mu } (su(2)) \) and \( SO_{\mu } ( 3 ). \) We also introduce the notion of a \(C^*\) coaction of a compact quantum group on a \(C^*\) algebra and give an account of Shuzhou Wang’s work in [35] and [42]. We discuss the example of the action of \( SO_{\mu } ( 3 ) \) on Podles’ spheres in details.


Hopf Algebra Quantum Group Compact Quantum Group Hilbert Module Weak Operator Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Takesaki, M.: Theory of Operator Algebras I. Springer, New York (Encyclopedia of Mathematical Sciences) (2002)MATHGoogle Scholar
  2. 2.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Elementary Theory, Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997)Google Scholar
  3. 3.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. II. Advanced Theory, Graduate Studies in Mathematics, vol. 16. American Mathematical Society, Providence (1997)Google Scholar
  4. 4.
    Pedersen, G.K.: \(C^* \)-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14. Academic Press, New YorkGoogle Scholar
  5. 5.
    Lance, E.C.: Hilbert \( C^* \) modules: a toolkit for operator algebraists. London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995)Google Scholar
  6. 6.
    Goswami, D.: Quantum group of isometries in classical and non commutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Rudin, W.: Functional Analysis. Tata-McGraw-Hill, New Delhi (1974)MATHGoogle Scholar
  8. 8.
    Woronowicz, S.L.: Compact quantum groups, pp. 845–884. In: Connes, A., et al. (eds.) Syme’tries quantiques (Quantum Symmetries). Les Houches. Elsevier, Amsterdam (1995)Google Scholar
  9. 9.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Sweedler, M.E.: Hopf Algebras. Benjamin, W.A (1969)MATHGoogle Scholar
  11. 11.
    Klimyk, A., Schmudgen, K.: Quantum Groups and their Representations. Springer, New York (1998)MATHGoogle Scholar
  12. 12.
    Kassel, C.: Quantum groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)Google Scholar
  13. 13.
    Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  14. 14.
    Masuda, T., Nakagami, Y., Woronowicz, S.L.: A \(C^{\ast }\)-algebraic framework for quantum groups. Int. J. Math. 14(9), 903–1001 (2003)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Reshetikhin, N.Y., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras, Algebra i analiz 1, 178 (1989) (Russian) (English translation in Leningrad Math. J. 1(1), 193–225 (1990))Google Scholar
  16. 16.
    Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ecole Norm. Sup. 33(4, 6), 837–934 (2000)Google Scholar
  17. 17.
    Van Daele, A.: Discrete quantum groups. J. Algebra 180, 431–444 (1996)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  19. 19.
    Mahanta, S., Mathai, V.: Operator algebra quantum homogeneous spaces of universal gauge groups. Lett. Math. Phys. 97(3), 263–277 (2011)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Korogodski, L.I., Soibelman, Ya.S.: Algebras of functions on quantum groups I, Math. Surv. Monographs AMS 56 (1998)Google Scholar
  21. 21.
    Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted \(SU ( N )\) groups. Inventiones Mathematicae 93(1), 35–76 (1988)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Timmermann, T.: An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zurich (2008)Google Scholar
  23. 23.
    Neshveyev, S., Tuset, L.: Compact Quantum Groups and their Representation Categories, Cours Spe’cialise’s [Specialized Courses], 20. Socie’te’ Mathe’matique de France, Paris (2013)MATHGoogle Scholar
  24. 24.
    Van Daele, A.: The Haar measure on a compact quantum group. Proc. Am. Math. Soc. 123, 3125–3128 (1995)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Maes, A., Van Daele, A.: Notes on compact quantum groups, Nieuw Arch. Wisk. 16(4) (1998) ((1–2), 73–112)Google Scholar
  27. 27.
    Rieffel, M., Van Daele, A.: A bounded operator approach to Tomita-Takesaki Theory. Pacific J. Math. 69(1), 187–221 (1977)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Vaes, S.: The unitary implementation of a locally compact quantum group action. J. Funct. Anal. 180(2), 426–480 (2001)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Enock, M., Schwartz, J.-M.: Kac algebras and Duality of Locally Compact Groups. Springer, Berlin (1991)MATHGoogle Scholar
  31. 31.
    Wang, S.: Tensor products and crossed products of compact quantum groups. Proc. London Math. Soc. 71(3), 695–720 (1995)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Am. Math. Soc. 363, 901–921 (2011)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Schmudgen, K., Wagner, E.: Dirac operators and a twisted cyclic cocycle on the standard Podles’ quantum sphere. arXiv:0305051v2
  34. 34.
    Podles’, P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum \( SU(2)\) and \( SO(3)\) groups. Commun. Math. Phys. 170, 1–20 (1995)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Boca, F.: Ergodic actions of compact matrix pseudogroups on \(C^*\)-algebras, recent advances in operator algebras (Orlans, 1992). Astrisque No. 232, 93–109 (1995)Google Scholar
  37. 37.
    Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. Noncommutative harmonic analysis with applications to probability. Banach Center Publ. (Polish Acad. Sci. Inst. Math., Warsaw) 78, 13–34 (2007)Google Scholar
  38. 38.
    Banica, T., Moroianu, S.: On the structure of quantum permutation groups. Proc. Amer. Math. Soc. 135(1), 21–29 (2007)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, S.: Structure and isomorphism classification of compact quantum groups \(A_u(Q)\) and \(B_u(Q)\). J. Oper. Theory 48, 573–583 (2002)MATHMathSciNetGoogle Scholar
  41. 41.
    Bhowmick, J., D’Andrea, F., Das, B., Dabrowski, L.: Quantum gauge symmetries in noncommutative geometry. J. Noncommutat. Geoemtry 8(2), 433–471 (2014)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, S.: Ergodic actions of universal quantum groups on operator algebras. Commun. Math. Phys. 203(2), 481–498 (1999)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Banica, T.: Theorie des representations du groupe quantique compact libre O(n), C.R. Acad. Sci. Paris Ser. I Math. 322(3), 241–244 (1996)Google Scholar
  44. 44.
    Banica, T.: Le groupe quantique compact libre \(U(n),\) Commun. Math. Phys. 190, 143–172 (1997)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Banica, T., Speicher, R.: Liberation of orthogonal Lie groups. Adv. Math. 222(4), 1461–1501 (2009)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Banica, T., Vergnioux, R.: Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier (Grenoble) 60(6), 2137–2164 (2010)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Bhowmick, J., D’Andrea, F., Dabrowski, L.: Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307, 101–131 (2011)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Bichon, J., Dubois-Violette, M.: Half-commutative orthogonal Hopf algebras. Pacific J. Math. 263(1), 13–28 (2013)MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Banica, T., Curran, S., Speicher, R.: Classification results for easy quantum groups. Pacific J. Math. 247(1), 1–26 (2010)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Banica, T., Curran, S., Speicher, R.: De Finetti theorems for easy quantum groups. Ann. Probab. 40(1), 401–435 (2012)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Banica, T., Curran, S., Speicher, R.: Stochastic aspects of easy quantum groups. Probab. Theory Related Fields 149(3–4), 435–462 (2011)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Banica, T., Bichon, J., Curran, S.: Quantum automorphisms of twisted group algebras and free hypergeometric laws. Proc. Am. Math. Soc. 139(11), 3961–3971 (2011)MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Banica, T., Bichon, J., Collins, B., Curran, S.: A maximality result for orthogonal quantum groups. Commun. Algebra 41(2), 656–665 (2013)MATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    Weber, M.: On the classification of easy quantum groups. Adv. Math. 245, 500–533 (2013)MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Raum, S.: Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications. Proc. Am. Math. Soc. 140(9), 3207–3218 (2012)MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Raum, S., Weber, M.: A Connection between easy quantum groups, varieties of groups and reflection groups. arXiv:1212.4742
  57. 57.
    Raum, S., Weber, M.: The combinatorics of an algebraic class of easy quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17(3), 1450016, 17 pp (2014)Google Scholar
  58. 58.
    Tarrago, P., Weber, M.: Unitary easy quantum groups: the free case and the group case. arXiv:1512.00195
  59. 59.
    Podles’, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podles’ quantum spheres. J. Noncommun. Geom. 1, 213–239 (2007)MATHMathSciNetGoogle Scholar
  61. 61.
    Bhowmick, J.: Quantum isometry groups, Ph.D. thesis (Indian Statistical Institute) (2010). arXiv:0907.0618
  62. 62.
    Van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. soc. 342(2) (1994)Google Scholar
  63. 63.
    Effros, E.G., Ruan, Z.: Discrete quantum groups. I. The Haar measure. Int. J. Math. 5(5), 681–723 (1994)MATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Soltan, P.: On actions of compact quantum groups. Illinois J. Math. 55(3), 953–962 (2011)MATHMathSciNetGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd 2016

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations