Skip to main content

Preliminaries

  • Chapter
  • First Online:
Quantum Isometry Groups

Part of the book series: Infosys Science Foundation Series ((ISFM))

  • 716 Accesses

Abstract

In this chapter, we discuss the basic concepts and results needed in the later chapters of the book. Beginning with a glimpse of operator algebras and Hilbert modules, free product and tensor products of \( C^* \) algebras and some examples, we proceed to the generalities on quantum groups including the basics of Hopf algebras and compact quantum groups as well as some concrete examples such as \(U_{\mu } (2), SU_{\mu } (2), \mathcal{U}_{\mu } (su(2)) \) and \( SO_{\mu } ( 3 ). \) We also introduce the notion of a \(C^*\) coaction of a compact quantum group on a \(C^*\) algebra and give an account of Shuzhou Wang’s work in [35] and [42]. We discuss the example of the action of \( SO_{\mu } ( 3 ) \) on Podles’ spheres in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takesaki, M.: Theory of Operator Algebras I. Springer, New York (Encyclopedia of Mathematical Sciences) (2002)

    MATH  Google Scholar 

  2. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Elementary Theory, Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997)

    Google Scholar 

  3. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. II. Advanced Theory, Graduate Studies in Mathematics, vol. 16. American Mathematical Society, Providence (1997)

    Google Scholar 

  4. Pedersen, G.K.: \(C^* \)-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14. Academic Press, New York

    Google Scholar 

  5. Lance, E.C.: Hilbert \( C^* \) modules: a toolkit for operator algebraists. London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  6. Goswami, D.: Quantum group of isometries in classical and non commutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009)

    Article  MATH  Google Scholar 

  7. Rudin, W.: Functional Analysis. Tata-McGraw-Hill, New Delhi (1974)

    MATH  Google Scholar 

  8. Woronowicz, S.L.: Compact quantum groups, pp. 845–884. In: Connes, A., et al. (eds.) Syme’tries quantiques (Quantum Symmetries). Les Houches. Elsevier, Amsterdam (1995)

    Google Scholar 

  9. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sweedler, M.E.: Hopf Algebras. Benjamin, W.A (1969)

    MATH  Google Scholar 

  11. Klimyk, A., Schmudgen, K.: Quantum Groups and their Representations. Springer, New York (1998)

    MATH  Google Scholar 

  12. Kassel, C.: Quantum groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    Google Scholar 

  13. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Masuda, T., Nakagami, Y., Woronowicz, S.L.: A \(C^{\ast }\)-algebraic framework for quantum groups. Int. J. Math. 14(9), 903–1001 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reshetikhin, N.Y., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras, Algebra i analiz 1, 178 (1989) (Russian) (English translation in Leningrad Math. J. 1(1), 193–225 (1990))

    Google Scholar 

  16. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ecole Norm. Sup. 33(4, 6), 837–934 (2000)

    Google Scholar 

  17. Van Daele, A.: Discrete quantum groups. J. Algebra 180, 431–444 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  19. Mahanta, S., Mathai, V.: Operator algebra quantum homogeneous spaces of universal gauge groups. Lett. Math. Phys. 97(3), 263–277 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Korogodski, L.I., Soibelman, Ya.S.: Algebras of functions on quantum groups I, Math. Surv. Monographs AMS 56 (1998)

    Google Scholar 

  21. Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted \(SU ( N )\) groups. Inventiones Mathematicae 93(1), 35–76 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Timmermann, T.: An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zurich (2008)

    Google Scholar 

  23. Neshveyev, S., Tuset, L.: Compact Quantum Groups and their Representation Categories, Cours Spe’cialise’s [Specialized Courses], 20. Socie’te’ Mathe’matique de France, Paris (2013)

    MATH  Google Scholar 

  24. Van Daele, A.: The Haar measure on a compact quantum group. Proc. Am. Math. Soc. 123, 3125–3128 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maes, A., Van Daele, A.: Notes on compact quantum groups, Nieuw Arch. Wisk. 16(4) (1998) ((1–2), 73–112)

    Google Scholar 

  27. Rieffel, M., Van Daele, A.: A bounded operator approach to Tomita-Takesaki Theory. Pacific J. Math. 69(1), 187–221 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vaes, S.: The unitary implementation of a locally compact quantum group action. J. Funct. Anal. 180(2), 426–480 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Enock, M., Schwartz, J.-M.: Kac algebras and Duality of Locally Compact Groups. Springer, Berlin (1991)

    MATH  Google Scholar 

  31. Wang, S.: Tensor products and crossed products of compact quantum groups. Proc. London Math. Soc. 71(3), 695–720 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Am. Math. Soc. 363, 901–921 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schmudgen, K., Wagner, E.: Dirac operators and a twisted cyclic cocycle on the standard Podles’ quantum sphere. arXiv:0305051v2

  34. Podles’, P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum \( SU(2)\) and \( SO(3)\) groups. Commun. Math. Phys. 170, 1–20 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Boca, F.: Ergodic actions of compact matrix pseudogroups on \(C^*\)-algebras, recent advances in operator algebras (Orlans, 1992). Astrisque No. 232, 93–109 (1995)

    Google Scholar 

  37. Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. Noncommutative harmonic analysis with applications to probability. Banach Center Publ. (Polish Acad. Sci. Inst. Math., Warsaw) 78, 13–34 (2007)

    Google Scholar 

  38. Banica, T., Moroianu, S.: On the structure of quantum permutation groups. Proc. Amer. Math. Soc. 135(1), 21–29 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, S.: Structure and isomorphism classification of compact quantum groups \(A_u(Q)\) and \(B_u(Q)\). J. Oper. Theory 48, 573–583 (2002)

    MATH  MathSciNet  Google Scholar 

  41. Bhowmick, J., D’Andrea, F., Das, B., Dabrowski, L.: Quantum gauge symmetries in noncommutative geometry. J. Noncommutat. Geoemtry 8(2), 433–471 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang, S.: Ergodic actions of universal quantum groups on operator algebras. Commun. Math. Phys. 203(2), 481–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Banica, T.: Theorie des representations du groupe quantique compact libre O(n), C.R. Acad. Sci. Paris Ser. I Math. 322(3), 241–244 (1996)

    Google Scholar 

  44. Banica, T.: Le groupe quantique compact libre \(U(n),\) Commun. Math. Phys. 190, 143–172 (1997)

    Article  MathSciNet  Google Scholar 

  45. Banica, T., Speicher, R.: Liberation of orthogonal Lie groups. Adv. Math. 222(4), 1461–1501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Banica, T., Vergnioux, R.: Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier (Grenoble) 60(6), 2137–2164 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Bhowmick, J., D’Andrea, F., Dabrowski, L.: Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307, 101–131 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Bichon, J., Dubois-Violette, M.: Half-commutative orthogonal Hopf algebras. Pacific J. Math. 263(1), 13–28 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Banica, T., Curran, S., Speicher, R.: Classification results for easy quantum groups. Pacific J. Math. 247(1), 1–26 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. Banica, T., Curran, S., Speicher, R.: De Finetti theorems for easy quantum groups. Ann. Probab. 40(1), 401–435 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  51. Banica, T., Curran, S., Speicher, R.: Stochastic aspects of easy quantum groups. Probab. Theory Related Fields 149(3–4), 435–462 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Banica, T., Bichon, J., Curran, S.: Quantum automorphisms of twisted group algebras and free hypergeometric laws. Proc. Am. Math. Soc. 139(11), 3961–3971 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Banica, T., Bichon, J., Collins, B., Curran, S.: A maximality result for orthogonal quantum groups. Commun. Algebra 41(2), 656–665 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  54. Weber, M.: On the classification of easy quantum groups. Adv. Math. 245, 500–533 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  55. Raum, S.: Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications. Proc. Am. Math. Soc. 140(9), 3207–3218 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  56. Raum, S., Weber, M.: A Connection between easy quantum groups, varieties of groups and reflection groups. arXiv:1212.4742

  57. Raum, S., Weber, M.: The combinatorics of an algebraic class of easy quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17(3), 1450016, 17 pp (2014)

    Google Scholar 

  58. Tarrago, P., Weber, M.: Unitary easy quantum groups: the free case and the group case. arXiv:1512.00195

  59. Podles’, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  60. Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podles’ quantum spheres. J. Noncommun. Geom. 1, 213–239 (2007)

    MATH  MathSciNet  Google Scholar 

  61. Bhowmick, J.: Quantum isometry groups, Ph.D. thesis (Indian Statistical Institute) (2010). arXiv:0907.0618

  62. Van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. soc. 342(2) (1994)

    Google Scholar 

  63. Effros, E.G., Ruan, Z.: Discrete quantum groups. I. The Haar measure. Int. J. Math. 5(5), 681–723 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  64. Soltan, P.: On actions of compact quantum groups. Illinois J. Math. 55(3), 953–962 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd

About this chapter

Cite this chapter

Goswami, D., Bhowmick, J. (2016). Preliminaries. In: Quantum Isometry Groups. Infosys Science Foundation Series(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3667-2_1

Download citation

Publish with us

Policies and ethics