Skip to main content

The Role of Lasers and Light Devices for the Treatment of Melasma

  • Chapter
  • First Online:

Abstract

The use of laser and light devices for melasma is based on its effects on several pathogenetic pathways.

  • Pigmentation in melasma is due to deposition of melanin in the keratinocytes and dermis, and the basis of laser and light treatment is fragmentation and removal of melanin.

  • Melanin has a broad absorption spectrum stretching from wavelengths of 500–1064 nm, allowing a variety of lasers and light sources to be used for fragmenting the melanin pigment.

  • Melanosomes have very short thermal relaxation time, in the range of 50–500 ns, and hence lasers and light devices with short pulse duration (in nanosecond and possibly picosecond domain) are the preferred devices (Q-switched lasers).

  • Longer wavelength lasers and light devices penetrate deeper and are required to target dermal pigment – hence longer wavelength lasers are preferred to treat melasma than shorter wavelength lasers which can target epidermal pigment only; however, longer wavelength lasers may cause more epidermo-dermal basement damage and lead to post-inflammatory hyperpigmentation.

  • To achieve favorable outcome, a maintenance treatment coupled with other modalities (topicals) should be used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Na JI, Choi SY, Yang SH, Choi HR, Kang HY, Park KC. Effect of tranexamic acid on melasma: a clinical trial with histological evaluation. J Eur Acad Dermatol Venereol. 2013;27(8):1035–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tse Y, Levine VJ, McClain SA, Ashinoff R. The removal of cutaneous pigmented lesions with the Q-switched ruby laser and the Q-switched neodymium: yttrium-aluminum-garnet laser. A comparative study. J Dermatol Surg Oncol. 1994;20:795–800.

    Article  CAS  PubMed  Google Scholar 

  3. Alster TS, Lupton JR. Laser therapy for cutaneous hyperpigmentation and pigmented lesions. Dermatol Ther. 2001;14:46–54.

    Article  Google Scholar 

  4. Taylor CR, Anderson RR. Ineffective treatment of refractory melasma and post-inflammatory hyperpigmentation by QS ruby laser. J Dermatol Surg Oncol. 1994;20(9):592–7.

    Article  CAS  PubMed  Google Scholar 

  5. Manaloto RMP, Alster T. Erbium: YAG laser resurfacing for refractory melasma. Dermatol Surg. 1999;25:121–3.

    Article  CAS  PubMed  Google Scholar 

  6. Nouri K, Bowes L, Chartier T, Romagosa R, Spencer JM. Combination treatment of melasma with pulsed CO2 laser followed by Q-switched Alexandrite laser: a pilot study. Dermatol Surg. 1999;25:494–7.

    Article  CAS  PubMed  Google Scholar 

  7. Angsurarangsee S, Polnikorn N. Combined ultrapulse CO2 laser and Q-switched alexandrite laser compared with Q-switched alexandrite laser alone for refractory melasma: Split face design. Dermatol Surg. 2003;29:59–64.

    Google Scholar 

  8. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.

    Article  PubMed  Google Scholar 

  9. Rahman Z, Alam M, Dover JS. Fractional laser treatment for pigmentation and texture improvement. Skin Therapy Lett. 2006;11:7–11.

    CAS  PubMed  Google Scholar 

  10. Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med. 2006;38(2):142–9.

    Article  PubMed  Google Scholar 

  11. Rokhsar CK, Fitzpatrick RE. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg. 2005;31:1645–50.

    CAS  PubMed  Google Scholar 

  12. Ong MW, Bashir SJ. Fractional laser resurfacing for acne scars: ablative vs non-ablative. Br J Dermatol. 2012;166:1160–9.

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg DJ, Berlin AL, Phelps R. Histologic and ultrastructural analysis of melasma after fractional resurfacing. Lasers Surg Med. 2008;40:134–8.

    Article  PubMed  Google Scholar 

  14. Lee HS, Won CH, Lee DH, An JS, Chang HW, Lee JH, et al. Treatment of melasma in Asian skin using a fractional 1,550-nm laser: an open clinical study. Dermatol Surg. 2009;35(10):1499–504.

    Article  CAS  PubMed  Google Scholar 

  15. Wind BS, Kroon MW, Meesters AA, Beek JF, van der Veen JP, Nieuweboer-Krobotová L, et al. Non-ablative 1,550 nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled split-face study. Lasers Surg Med. 2010;42(7):607–12.

    Article  PubMed  Google Scholar 

  16. Kroon MW, Wind BS, Beek JF, van der Veen JP, Nieuweboer-Krobotová L, Bos JD, Wolkerstorfer A. Nonablative 1550-nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled pilot study. J Am Acad Dermatol. 2011;64(3):516–23.

    Article  PubMed  Google Scholar 

  17. Jang YH, Park JY, Park YJ, Kang HY. Changes in melanin and melanocytes in mottled hypopigmentation after low-fluence 1,064-nm Q-switched Nd:YAG laser treatment for melasma. Ann Derm. 2015;27(3):341.

    Google Scholar 

  18. Polnikorn N. Rx of refractory dermal melasma with QS Nd:YAG laser: 2 case reports. J Cosmet Laser Ther. 2008;10:167–73.

    Article  PubMed  Google Scholar 

  19. Cho SB, Kim JS, Kim MJ. Melasma treatment in Korean women using a 1064-nm Q-switched Nd:YAG laser with low pulse energy. Clin Exp Dermatol. 2009;34:e847–50.

    Article  CAS  PubMed  Google Scholar 

  20. Jeong SY, Shin JB, Yeo UC, Kim WS, Kim IH. Low-fluence QS Nd:YAG laser for melasma with pre- or post-treatment triple combination cream. Dermatol Surg. 2010;6:909–18.

    Article  Google Scholar 

  21. Choi M, Choi JW, Lee SY, Choi SY, Park HJ, Park KC, et al. Low-dose 1064-nm Q-switched Nd:YAG laser for the Rx of melasma. Dermatol Treat. 2010;21:224–8.

    Article  Google Scholar 

  22. Wattanakrai P, Mornchan R, Eimpunth S. Low-fluence Q-switched Nd:YAG (1,064 nm) Laser for the treatment of facial melasma in Asians. Dermatol Surg. 2010;36(1):76–87.

    Article  PubMed  Google Scholar 

  23. Shek SY, Yeung CK, Chan HH. A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma. Lasers Surg Med. 2010;42(8):712–9.

    Article  PubMed  Google Scholar 

  24. Kou S, Yasumura K, Satake T, Maegawa J. Influence of the frequency of laser toning for melasma on occurrence of leukoderma and its early detection by ultraviolet imaging. Lasers Surg Med. 2015;47(2):161–7.

    Article  PubMed  Google Scholar 

  25. Jang YH, Park JY, Park YJ, Kang HY. Changes in melanin and melanocytes in mottled hypopigmentation after low-fluence 1,064-nm Q-switched Nd:YAG laser treatment for melasma. Ann Derm. 2015;27(3):340–2.

    Article  Google Scholar 

  26. Wang CC, Hui CY, Sue YM, Wong WR, Hong HS. Intense pulsed light for the treatment of refractory melasma in Asian persons. Dermatol Surg. 2004;30:1196–200.

    PubMed  Google Scholar 

  27. Li YH, Chen ZS, Wei HS, Wu Y, Liu M, Xu YY, et al. Efficiency of and safety of Intense pulsed light in treatment of melasma in Chinese patients. Dermatol Surg. 2008;34:1–9.

    Article  Google Scholar 

  28. Bae MI, Park JM, Jeong KH, Lee MH, Shin MK. Effectiveness of low-fluence and short-pulse intense pulsed light in the treatment of melasma: a randomized study. J Cosmet Laser Ther. 2015;17(6):292–5.

    Google Scholar 

  29. Jun WJ, Lee SM, Han JS, Lee SH, Chang SY, Haw S, et al. A prospective, split-face, randomized study of the efficacy and safety of a novel fractionated intense pulsed light treatment for melasma in Asians. J Cosmet Laser Ther. 2015;17(5):259–66.

    Google Scholar 

  30. Vachiramon V, Sirithanabadeekul P, Sahawatwong S. Low-fluence Q-switched Nd:YAG 1064-nm laser and intense pulsed light for the treatment of melasma. J Eur Acad Dermatol Venereol. 2015;29(7):1339–46.

    Article  CAS  PubMed  Google Scholar 

  31. Kim EH, Kim YC, Lee ES, Kang HY. The vascular characteristics of melasma. J Derm Sci. 2007;46:111–6.

    Article  CAS  Google Scholar 

  32. Passeron T. Melasma pathogenesis and influencing factors: an overview of the latest research. J Eur Acad Dermatol Venereol. 2013;27(S1):5–6.

    Article  CAS  PubMed  Google Scholar 

  33. Passeron T, Fontas E, Kang HY, Bahadoran P, Lacour JP, Ortonne JP. Melasma treatment with pulsed-dye laser and triple combination cream: a prospective, randomized, single-blind, split-face study. Arch Dermatol. 2011;147(9):1106–8.

    Article  PubMed  Google Scholar 

  34. Passeron T. Long-lasting effect of vascular targeted therapy of melasma. J Am Acad Dermatol. 2013;69(3):e141–2.

    Article  PubMed  Google Scholar 

  35. Lee HI, Lim YY, Kim BJ, Kim MN, Min HJ, Hwang JH, Song KY. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511) for treatment of melasma in Asian patients. Dermatol Surg. 2010;36:885–93.

    Article  CAS  PubMed  Google Scholar 

  36. Eimpunth S, Wanitphadeedecha R, Triwongwaranat D, Varothai S, Manuskiatti W. Therapeutic outcome of melasma treatment by dual-wavelength (511 and 578 nm) laser in patients with skin phototypes III-V. Clin Exp Dermatol. 2014;39(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ghorbel HH, Boukari F, Fontas E, Montaudié H, Bahadoran P, Lacour JP, Passeron T. Copper bromide laser vs triple-combination cream for the treatment of melasma: a randomized clinical trial. JAMA Dermatol. 2015;151(7):791–2.

    Article  Google Scholar 

  38. GRADE Working Group. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490.

    Article  PubMed Central  Google Scholar 

  39. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, Grade Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. GRADE Working Group. Rating quality of evidence and strength of recommendations: What is “quality of evidence” and why is it important to clinicians? BMJ. 2008;336(7651):995–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Leok Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Goh, C.L. (2017). The Role of Lasers and Light Devices for the Treatment of Melasma. In: Handog, E., Enriquez-Macarayo, M. (eds) Melasma and Vitiligo in Brown Skin. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3664-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3664-1_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3662-7

  • Online ISBN: 978-81-322-3664-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics